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Abstract

Mucoid mucA22 Pseudomonas aeruginosa (PA) is an opportunistic lung pathogen of cystic

fibrosis (CF) and chronic obstructive pulmonary disease (COPD) patients that is highly sen-

sitive to acidified nitrite (A-NO2
-). In this study, we first screened PA mutant strains for sensi-

tivity or resistance to 20 mM A-NO2
- under anaerobic conditions that represent the chronic

stages of the aforementioned diseases. Mutants found to be sensitive to A-NO2
- included

PA0964 (pmpR, PQS biosynthesis), PA4455 (probable ABC transporter permease), katA

(major catalase, KatA) and rhlR (quorum sensing regulator). In contrast, mutants lacking

PA0450 (a putative phosphate transporter) and PA1505 (moaA2) were A-NO2
- resistant.

However, we were puzzled when we discovered that mucA22 mutant bacteria, a frequently

isolated mucA allele in CF and to a lesser extent COPD, were more sensitive to A-NO2
- than

a truncated ΔmucA deletion (Δ157–194) mutant in planktonic and biofilm culture, as well as

during a chronic murine lung infection. Subsequent transcriptional profiling of anaerobic, A-

NO2
--treated bacteria revealed restoration of near wild-type transcript levels of protective

NO2
- and nitric oxide (NO) reductase (nirS and norCB, respectively) in the ΔmucA mutant in
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contrast to extremely low levels in the A-NO2
--sensitive mucA22 mutant. Proteins that were

S-nitrosylated by NO derived from A-NO2
- reduction in the sensitive mucA22 strain were

those involved in anaerobic respiration (NirQ, NirS), pyruvate fermentation (UspK), global

gene regulation (Vfr), the TCA cycle (succinate dehydrogenase, SdhB) and several double

mutants were even more sensitive to A-NO2
-. Bioinformatic-based data point to future stud-

ies designed to elucidate potential cellular binding partners for MucA and MucA22. Given

that A-NO2
- is a potentially viable treatment strategy to combat PA and other infections, this

study offers novel developments as to how clinicians might better treat problematic PA infec-

tions in COPD and CF airway diseases.

Introduction

Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) are two chronic air-

way diseases complicated by life-threatening infections caused by the opportunistic Gram-neg-

ative bacterium, Pseudomonas aeruginosa (PA). In the United States alone, there are an

estimated 15 million COPD patients (251 million worldwide (WHO estimates, [1]), while

there are only 30,000 U.S. CF patients (70,000 world-wide, [2]). COPD is a highly deteriorative

alveolar disease coupled with airway derangements causing an accumulation of thick mucus

that is typically a consequence of long-term smoking. Cultures of respiratory secretions yield

PA in 8.5–16.8% of patients who also experience more frequent COPD exacerbations [3, 4]

and up to 18% of patients requiring mechanical ventilation [5] who have increased mortality.

In contrast, CF airway disease is biphasic, involving an early oxidative, neutrophil-rich envi-

ronment [6] (especially during acute exacerbations) [7] followed by a chronic hypoxic or

anaerobic phase [8–10]. In contrast, chronically infected patients suffer from poor airway oxy-

genation resulting, in part, from intractable, antibiotic-resistant [11] bacterial communities

known as biofilms that are formed by PA and other organisms embedded within thick micro-

aerobic [12] or anaerobic airway mucus [8, 13–16].

A further reduction in lung function occurs when mucoid, mucA22 mutant alginate-over-

producing mutant PA forms biofilms that are of the mode II variety [13, 17, 18]. The mucA22
allele results from a C residue deletion at position 430, leaving a truncated 15.8 kDa MucA pro-

tein [19]. Unlike mode I biofilms, where organisms attach directly to animate (e.g., cells) or

inanimate (e.g., plastic, glass, etc.) surfaces, mode II biofilm bacteria are not attached to sur-

faces, but rather to themselves, developing as highly structured communities embedded within

the thick mucus that mature into “soccer ball-shaped” micro- and/or macrocolonies in the

infected airways [20]. Many research groups around the world are attempting to unravel the

precise metabolic features of PA within mode II biofilms embedded within the CF and COPD

airway mucus [17, 21, 22]. Metabolism of certain amino acids appears to be prevalent among

PA isolates from chronically infected patients including aromatic amino acids, specifically phe-

nylalanine and tyrosine [23]. Two seminal papers were published in 2002 by our group (Yoon

et al., [8]) and Worlitzsch et al., [13] that indicate that oxygen tension within the thick mucus

lining of the CF airways is significantly reduced and there are some niches that are likely

completely anaerobic. For many CF and COPD pathogens, including PA, an alternative elec-

tron acceptor such as nitrate (NO3
-) or nitrite (NO2

-) is required. Both NO3
- and NO2

- can be

detected in sufficient quantities for PA to undergo anaerobic respiration in both CF [24] and

COPD [25]. Since our anaerobic biofilm theory of chronic CF lung disease was reported in

2002 [8], obligate anaerobes have been isolated from CF sputum (for recent review, see [18])
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as well as in COPD sputum [26]. In fact, there have been many published manuscripts span-

ning over 40 years describing the isolation of obligate anaerobes from the CF airways, thereby

supporting our anaerobic theory [10, 27, 28] (for mini-reviews, see [17, 18]). In conjunction

with anaerobic nitrogen oxide metabolism, one very significant development in the potential

treatment of mucoid PA was discovered in 2006 where we (Yoon et al., [9]) also showed that

mucoid mucA22 mutant CF isolates were sensitive to acidified sodium nitrite (herein termed

A-NO2
-). A-NO2

- was used in the aforementioned study because we found that the pH of the

CF airway surface liquid from explanted CF lungs was ~6.4–6.5 [9]. However, in that study, of

nearly 100 mucoid PA isolates from 12 different North American CF clinics, expectedly none

possessed true deletions of the mucA gene [9]. A second study, using the other two major

COPD and CF pathogens methicillin-resistant Staphylococcus aureus and Burkholderia cepa-
cia, as well as nonmucoid PA showed that A-NO2

- also kills these organisms, particularly

under anaerobic conditions [29]. Relatedly, it should be noted that one feature of CF is

reduced airway iNOS (inducible nitric oxide (NO) synthase) expression, especially in chronic

CF [30]. iNOS is an enzyme that generates potentially antimicrobial levels of nitric oxide (NO)

and is a major contributor to the hosts innate immune system. In contrast, iNOS also appears

to play a role in COPD, as iNOS mRNA levels were recently shown to be elevated in COPD

patient’s relative to nonsmokers and smokers without COPD [31].

There is a severe dearth of nearly any formal understanding of the genetics of adaptive

mutations in PA that are acquired in COPD. Puzzlingly, given the estimated 3,600-fold

reduced patient numbers world-wide for CF relative to COPD, vastly more is understood

regarding mutations that emerge during the course of CF [32, 33]. For example, PA acquires 3

adaptive mutations during CF, lasR (early �x= 12 years, rhlR (�x= 17 years [34]) and mucA
(early [in some cases 3 yrs old] and late (chronic) CF [9, 35] and likely also in COPD [36]. In

2002, we discovered yet another weakness in mutants frequently isolated from CF patient spu-

tum. We discovered that anaerobic PA rhlR QS (controlled by the las system) mutants in PA
anaerobic biofilms mysteriously committed an anaerobic metabolic suicide in biofilms by

overproduction of toxic endogenous levels of respiratory NO [8]. Chronic, long-term infec-

tions are characterized by bacteria that have undergone a process known as mucoid conver-

sion within the progressively thickened airway mucus [37]. This process involves mutations in

a variety of genes including mucB (algN) (periplasmic protein that binds the anti-sigma factor,

MucA, [38, 39]), algW (encoding a membrane protease that cleaves MucA [40]), and mucD (a

periplasmic protease that degrades MucA via activation of MucP [39, 41]. However, the most

abundant mutations that trigger mucoid conversion in both COPD [31, 36] and CF [9, 35] are

within the mucA gene, encoding a cytoplasmic membrane-spanning anti-sigma factor [35].

The primary appreciated function of MucA is to sequester the extracytoplasmic sigma factor

AlgT(U) near the cytoplasmic side of the inner membrane [42]. The most common mucA
mutant allele is called mucA22 [9, 35], caused by a C deletion at base 430, resulting in a 15.8

kDa truncated protein that allows mucoid conversion by enabling AlgT(U) to activate tran-

scription of genes involved in production of the viscous exopolysaccharide alginate, a large lin-

ear β-1,4-linked co-polymer consisting of β-D-mannuronate and α-L-guluronate [43, 44]. The

production of alginate severely complicates the clinical course for CF patients [45], resulting in

progressively worsened forced expiratory volume per second (FEV1) measurements and poor

pulmonary function tests (PFTs). Thus, mucoid conversion is often considered one, if not the

most negative, clinical hallmarks precipitating a dramatic antibiotic regimen adjustment for

patients infected by such organisms.

Given this important and comprehensive background information, in this study, we elected

to first identify a series of transposon mutants that were either more susceptible or resistant to
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defined concentrations of anaerobic A-NO2
-. During this process, we discovered a different

and unexpected role of MucA in sensitivity to A-NO2
- by generating not only mucA22

mutants, but also a truncated ΔmucA mutant (Δ157–194), the latter of which were surprisingly

resistant to A-NO2
- relative to its mucA22 counterpart. We used a combined transcriptional

profiling and protein S-nitrosylation approach to identify potential mechanisms of A-NO2
-

sensitivity in wild-type, mucA22 vs. ΔmucA strains. First, the transcription levels of genes

encoding nitrate (NO3
-), nitrite (NO2

-) and nitric oxide (NO) reductase (collectively NAR,

NIR and NOR) were at or near wild-type levels in ΔmucA and wild-type bacteria when com-

pared to the mucA22 mutant, which we show to be far lower in this study upon exposure to

A-NO2
-. Consistent with these observations, we show that mucA22 bacteria are susceptible to

A-NO2
- during a chronic lung infection in mice, while ΔmucA bacteria were resistant. Our

data also involved extensive bioinformatics analysis suggesting that MucA22, a truncated

~15.8 kDa protein, has an as yet unknown anaerobic function, but also confers a significant

defect, a translationally-significant and marked sensitivity to A-NO2
-.

Results

Screening for PA strains that demonstrate enhanced sensitivity or

resistance to A-NO2
-

A mariner Tn library representing a three genome coverage (~15,000 mutants) and previously

constructed insertion or deletion mutants were used to screen for PA strains for sensitivity or

resistance to 20 mM A-NO2
- under anaerobic conditions (Table 1). Using wild-type PAO1

bacteria and strain FRD1 as respective A-NO2
- resistant and sensitive controls, several Tn

mutants that were identified to be more resistant to A-NO2
-. These included PA1504 (tran-

scriptional regulator), PA0450 (probable PO4
3- transporter), PA1370 (hypothetical protein),

and PA0780 (proline utilization regulator). In contrast, A-NO2
- sensitive strains included

mutants lacking PA0964 (pmpR, regulator of PqsR-mediated quorum sensing, [46]), PA4455

(a putative ABC transporter permease [47]), ribonucleotide diphosphate reductase subunits

Table 1. Transposon (Tn) and gene replacement mutants found to be sensitive (S) or resistant (R) to 20 mM

A-NO2
- under anaerobic conditions after 24 hr incubation.

Strain Gene (Sensitive (S)/Resistant (R) Reference

FRD1 mucA22 S [51]

PAO1 mucA22 S [9], This study

PAO1 pmpR::Tn-Gm S This study

PAO1 norCB::Gm S [50]

PAO1 rhlR::Gm S [52]

PAO1 katA::Gm S [53]

PAO1 lon::Tn-Gm S This study

PAO1 nrdJa,b::Tn-Gm S This study

PAO1 nuoK::Tn-Gm S This study

PAO1 PA4455::Gm S [47], This study

PAO1 ΔmucA (Δ157–194) (Hassett lab) S This study

PAO1 ΔmucA (Δ157–194) (Schurr lab) R This study

PAO1 PA1504::Tn-Gm R This study

PAO1 PA0450::Tn-Gm R This study

PAO1 PA1370::Tn-Gm R This study

PAO1 PA0780::Tn-Gm R This study

PAO1 PA0780::Tn-Gm R This study

https://doi.org/10.1371/journal.pone.0216401.t001
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(PA5496-nrdJa, 5497-nrdJb), mucA22, PA0779 (ATP-dependent protease), katA (major cata-

lase KatA, [48]), rhlR (quorum sensing regulator, [49]), lon (Lon protease), nuoK (NADH

dehydrogenase subunit), norCB (NO reductase, [50], clinical strain FRD1 and a proven

A-NO2
- sensitive mucA22 mutant [51], respectively. As a control, we constructed a deletion

mutant of mucA (ΔmucA) and to our surprise, this strain was resistant to A-NO2
-.

The mucA gene, mucoidy and alginate production in mucA22 vs. ΔmucA
strains

The immediate goal of our experimental plan moving forward was to assess the evolutionary

“rationale” underlying why the mucA22 mutation occurs so frequently in PA derived from

sputum from patients suffering from both CF and COPD airway disease [9, 36] and evaluate

whether a complete deletion of the mucA gene differed with respect to alginate production and

sensitivity to the potential translational CF and COPD therapeutic agent, A-NO2
-. As a

reminder, the mucA gene encodes a cytoplasmic membrane spanning anti-sigma factor that

binds the extra-cytoplasmic sigma factor AlgT(U) in the cytoplasm and is one of the most

common mechanisms for the conversion to mucoidy in both of the aforementioned diseases

[35]. The mucA gene is the second gene of an 11.524 kb alginate gene regulation operon

located between 831,301 and 842,825 bp on the PA chromosome (Fig 1, www.pseudomonas.

com). Other genes indicated by a minus sign (-) allow for mucoid conversion or alginate gene

regulation when mutated (e.g., negative regulators mucB,C,D, etc. [38, 39, 54].

Isogenic mucA1 and ΔmucA mutants in the PAO1 background were visibly mucoid on L-

agar plates (Fig 2A). The ΔmucA mutant (Δ157–194) was created in both the Hassett and

Schurr labs and confirmed by sequence analysis, S1A–S1C Fig). However, we must emphasize

that a complete in-frame deletion could not be constructed despite numerous attempts by

both laboratories and equipped with the appropriate mutagenesis constructs. Additionally, the

PA mucA22 and ΔmucA mutants were complemented in trans to the nonmucoid phenotype

using the wild-type mucA gene inserted into the arabinose-inducible pHERD20T plasmid (Fig

2A). Surprisingly, the ΔmucA mutant was found to generate significantly less alginate than

mucA22 (p = 0.012) but greater than the nonmucoid strain, PAO1 (Fig 2B). We also tested the

alginate stability phenotype in mucA22 vs. ΔmucA bacteria for it is well known that the process

of mucoid reversion (mucoid-to-nonmucoid phenotype) occurs when bacteria are grown

under aerobic static conditions [56]. Fig 2C indicates that mucoid stability is greater in

mucA22 versus ΔmucA bacteria after incubated for 48 hr.

Mucoidy and A-NO2
- planktonic sensitivity of mucA22, ΔmucA, and strain

FRD1 (mucA22) relative to PA
The sensitivity of each strain used in Fig 2A–2C to A-NO2

- in anaerobic planktonic cultures

was assessed, as well as the well-known CF mucA22 isolate known as FRD1 [9]. Surprisingly,

the ΔmucA mutant was found to be more resistant to A-NO2
- relative to a sensitive mucA22

PA mutant. Strain FRD1 was even more sensitive to 15 mM A-NO2
- than its mucA22 PA

PAO1-based mutant counterpart (Fig 3).

A-NO2
- sensitivity of mucA22 vs. ΔmucA in anaerobic biofilms

We have previously shown that anaerobic conditions favor more robust biofilm formation by

PA than aerobic conditions and that anaerobic conditions can exist in the thick CF airway sur-

face liquid [8], thereby limiting the overall efficacy of the powerful aminoglycoside, tobramy-

cin and other front-line antibiotics [57]. Thus, we next assessed the overall efficacy of A-NO2
-
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against mature, pre-formed anaerobic biofilms in strains PA, mucA22, ΔmucA and their com-

plemented strains. Fig 4A shows confocal laser scanning microscopy (CLSM) analysis results

of 1 day old biofilms of bacteria that were used for the planktonic A-NO2
- susceptibility assay.

These bacterial biofilms were continuously grown in LBN-pH 6.5 (control condition, NO3
-) or

LBN-pH 6.5 (treated condition, NO3
- 15 mM NO2

-) for 2 additional days. As shown in the

planktonic susceptibility assay, mucA22 strains were also more sensitive to A-NO2
- than the

ΔmucA strain in bacterial biofilms that showed 37% and 25.5% cell death compared to control,

respectively (p = 0.029, Fig 4A and 4B). A-NO2
- resistance complementation was achieved

using pHERDmucA. In some cases, the biofilm structure often was slightly altered, especially

in mucA-complemented bacteria which may be a function of multiple copies of cellular MucA.

Taken together, our results showed that mucA22 is more sensitive to A-NO2
- than ΔmucA in

both planktonic and biofilm cultures.

Sensitivity of mucA22 but not ΔmucA PA to A-NO2
- during chronic murine

lung infection

To test the role of MucA in A-NO2
- sensitivity in an animal model of infection, a chronic

murine lung infection model was employed as previously described with the exception that

strain PAO1 was not used for it is nonmucoid with a wild-type mucA allele [9]. Infected mice

Fig 1. Genetic map and function of the gene products of>12 kb genomic region containing the algT(U)mucABCD genes (scanned from www.

pseudomonas.com). The mucA gene immediately downstream of the algT(U) locus is circled. Minus signs (-) indicated genes involved in mucoid conversion

when mutated [35, 39, 54, 55].

https://doi.org/10.1371/journal.pone.0216401.g001
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were treated twice daily with 15 mM A-NO2
- for 5 days and the mice were then sacrificed. Fig

5 demonstrates that mucA22 were very sensitive to A-NO2
- treatment when compared to

ΔmucA mutant bacteria. This is consistent with the planktonic and biofilm A-NO2
- suscepti-

bility assay results.

Microarray analysis of wild-type, mucA22 and ΔmucA PA upon exposure to

A-NO2
-

Given that mucA22 mutant bacteria were more sensitive to A-NO2
- than ΔmucA bacteria in

planktonic and biofilm culture as well as during murine airway infection, we next performed

transcriptional profiling experiments using wild-type PAO1, mucA22 and ΔmucA bacteria to

help elucidate the mechanism(s) underlying this apparent paradox. First, considerable efforts

were made to isolate quality RNA from A-NO2
- treated organisms. After many attempts and

various protocol adjustments, all three strains were grown for 24 hr under anaerobic condi-

tions in LBN, pH 6.5, followed by treatment of each organism with 15 mM A-NO2
- for 20 min.

Fig 2. Differences in the mucoid phenotype of the mucA22 and ΔmucA mutants. A. Colony morphology of wild-type,mucA22, and ΔmucA bacteria on L-agar plates

containing +/- of 0.1% arabinose which is the inducer of pHERD20T or pHERD20TmucA. B. Representative alginate levels (μg/ml) produced by PA wild-type (white

bar), ΔmucA (light gray bar) and mucA22 (black bar) bacteria, respectively (n = 3). C. Time course of aerobic mucoid reversion profile of mucA22 (solid line) vs. ΔmucA
(dashed line) bacteria (n = 3).

https://doi.org/10.1371/journal.pone.0216401.g002
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The number of genes in each functional class comparing (i) PAO1 vs. mucA22 (Fig 6A, S1

Table), (ii) PAO1 vs. ΔmucA (Fig 6B, S2 Table) and (iii) mucA22 vs. ΔmucA (Fig 6C, S3 Table)

are depicted, respectively. Interestingly, genes involved in NIR and NOR activity showed sig-

nificantly reduced expression in mucA22 bacteria anaerobic induction conditions, while the

expression of these genes was elevated in the ΔmucA mutant. This is consistent with the

A-NO2
- sensitivity phenotype of the mucA22 strain as this could lead to accumulation of toxic

NO2
-/NO in the bacteria as a result of inefficient use of the anaerobic respiratory pathway

involved in A-NO2
- metabolism: A-NO2

- > NO > N2O. Fig 6D is a Venn diagram synopsis of

gene overlap, the colors of which and the genes are also shown in Table 2.

Fig 3. Anaerobic A-NO2
- susceptibility assay in planktonic bacteria. Overnight planktonic cultures of PA wild-type strain PAO1 (filled circles), mucA22

(pHERDmucA) (closed squares), ΔmucA (open diamonds), ΔmucA (pHERDmucA) (open inverted triangle), mucA22 (open squares) as well as the A-NO2
-

sensitive CF isolate FRD1 (closed circles) were diluted 1:100 into fresh LBN, pH 6.5 supplemented with 15 mM NaNO2, respectively. Cultures were incubated

anaerobically and sampled at the indicated times for CFU enumeration (n = 3).

https://doi.org/10.1371/journal.pone.0216401.g003
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Fig 4. (A) Assessment of A-NO2
- on PA (wild-type), mucA22 and ΔmucA mutant strains viability when grown

anaerobically as biofilms. Bacterial suspensions were diluted 100-fold in LBN, pH 6.5 and grown in Costar glass-

bottomed, chambers amenable to confocal laser scanning microscopic analysis. The planktonic cells were washed from

one-day old biofilms. The bacterial biofilms were separated into 2 conditions; control (LBN (NO3
-), pH 6.5) and

treated (LBN (NO3
-), pH 6.5 plus 15 mM A-NO2

- or NO3
-/NO2

-) conditions and continuously grown for 2 more days

under anaerobic condition. Both top and sagittal views of each live/dead stained biofilm are depicted after CLSM. Live

cells are green while red cells are dead (B) The ratio of percent cells dead was calculated by comparison between

control and treated conditions. The experiments were performed 3 times independently (n = 3).

https://doi.org/10.1371/journal.pone.0216401.g004
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Identification of S-nitrosylated proteins in A-NO2
--treated bacteria

To further evaluate the response of PA to A-NO2
-, a unique proteomic approach was used to

measure cysteine S-nitrosylation of cellular proteins mediated by NO generated from

A-NO2
-reduction, known as SNOSID (S-nitrosylation, SNO Site Identification, [58]). A-NO2

-

treatment of bacteria allows for significant generation of what are termed S-nitrosylated pro-

teins (or SNO proteins, [59]). This technique was used to monitor PA proteins that had

increased or decreased levels of SNO-proteins in wild-type, mucA22 and ΔmucA strains. The

data collected are based upon SNO proteins in the 2-D gels shown in S2A–S2C Fig. Twelve

SNO proteins are presented in tabular form after mass spectrometric identification and their

relative levels expressed in each of the aforementioned strains listed in Table 3. Interestingly,

several of the proteins that showed differing levels of S-nitrosylation include those involved in

anaerobic metabolism (NirQ, NirS, NrdJB) or anaerobic survival (UspK, FdnG), alginate

Fig 5. Sensitivity of mucA22 vs. ΔmucA PA during a mouse chronic airway infection. Six-week old male Balb/C mice were infected intratracheally with

50 μl of ~5 x 106 of mucA22 or ΔmucA mutant strains suspended in 0.9% saline containing purified PA alginate (final concentration 1.1 mg/ml). After 24

hr, mouse lungs were instilled with 25 μl of 15 mM A-NO2
- at pH 6.5 (in 0.1 M phosphate buffer) intranasally twice daily. On day 5 post-infection, the

mice were sacrificed, and the viable bacteria from serially diluted lung homogenates were enumerated (n = 8).

https://doi.org/10.1371/journal.pone.0216401.g005
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production (GDP-mannose dehydrogenase), the TCA cycle (succinate dehydrogenase, SdhB)

and virulence (Vfr).

Given that PA usp (universal stress protein) genes are necessary for long-term anaerobic

survival [60], we postulated that a double mucA22 uspK would be hyper-sensitive to anaerobic

A-NO2
- treatment. Fig 7 clearly confirms our hypothesis that this mutant is indeed more sus-

ceptible to A-NO2
- treatment than mucA22 mutant bacteria. We also identified that the FdnG

(formate dehydrogenase-O, major subunit, [61]) that is physically associated with NAR in vivo
[62], was identified to be S-nitrosylated. In comparison to the mucA22 uspK mutant, the

mucA22 fdnG double mutant was even more sensitive to A-NO2
- (Fig 7).

Why is CF clinical strain FRD1 hypersensitive to A-NO2
- relative to PAO1

mucA22?

To determine whether mucoid CF strain FRD1 (i.e., a well-studied, chronically adapted CF

strain, [51]) had mutations other than mucA22 that might reveal clues as to why it is so sensi-

tive to A-NO2
- relative to PA mucA22, we assessed differences in the PA vs. FRD1 genome, the

latter of which was recently sequenced [63]. Specifically, we assessed potential mutations in

genes encoding anaerobic respiratory/regulatory genes in strain FRD1 that are not in strain

PA [63]. The PAO1 genome is comprised of 6,264,404 bp while that of the FRD1 genome has

6,712,339 bp total nucleotides, with a percent G+C content of ~66%, based upon data com-

piled from 133 contigs [63, 64]. A search and analysis of genes predicted to be involved in

A-NO2
-, resistance showed numerous single base pair substitutions. These included missense

mutations in genes such as several of the nar genes, as well as in nirS, and norCB among others

that would hypothetically affect A-NO2
-, sensitivity. However, during anaerobic conditions,

mutations within the norB or norC genes would likely influence sensitivity to A-NO2
-.

Fig 6. Microarray assessment of gene classes that are activated (white bars) vs. repressed (black bars) in (A) wild-

type PAO1 vs. mucA22, (B) PAO1 vs. ΔmucA and (C) mucA22 vs. ΔmucA bacteria and (D) Venn diagram

indicating gene expression patterns that overlap with A-NO2
--treated anaerobic PAO1, mucA22 and ΔmucA

strains. The colors and the appropriate genes within each color subset are listed in Table 2, respectively.

https://doi.org/10.1371/journal.pone.0216401.g006
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Differences in the coding sequence of the PAO1 and FRD1 norB gene revealed a deletion of

Arg300 in the latter [63]. In strain PAO1, Arg300 is positioned in a highly basic loop that con-

sists of 4 consecutive arginine residues linking Helix IX and Helix X on the cytoplasmic side

(Fig 8). Arg300 forms a hydrogen bond with the carbonyl of Lys228 that caps the C-terminus

of Helix VI. Therefore, it is possible that loss of this interaction might result in conformational

changes that distort the binuclear centers of NorB, specifically His207, which is positioned on

Helix VI and is a ligand for FeB. When cloned into a PAO1 norCB mutant, the FRD1 norCB
genes could not rescue a normal anaerobic growth density (S4 Table).

Table 2. Overlapping differential gene expression corresponding to Fig 6D�.

PA0025_aroE_at PA0523_norC_at PA0525_at PA1059_at PA1083_flgH_at PA1837_at

A.(18) PA1838_cysI_at PA2687_pfeS_at PA3413_at PA3530_at PA3630_at PA3632_at

PA3880_at PA4155_at PA4156_at PA4158_fepG_at PA4161_fepG-at PA4896_at

PA0126_at PA0291_oprE_at PA0293_at PA0320_at PA0425_mexA_at PA0431_at

PA0548_tktA_at PA0549_at PA0792_prpD_at PA0793_at PA0794_at PA0795_prpC_at

PA0796_prpB_at PA0797_at PA1135_at PA1136_at PA1137_at PA1239_at

PA1805_ppiD_at PA2015_at PA2287_at PA2288_r_at PA2657_at PA2659_at

PA2840_at PA2934_at PA3008_at PA3118_leuB_at PA3119_at PA3120_leuD_at

B.(57) PA3195_gapA_at PA3748_at PA3787_at PA3932_at PA4030_at PA4059_at

PA4129_at PA4130_at PA4131_at PA4132_at PA4234_uvrA_at PA4636_at

PA4768_smpB_at PA4769_at PA4839_speA_at PA4853_fis_at PA4915_at PA4932_rplI_at

PA4933_at PA4935_rpsF_at PA5125_ntrC_at PA5147_mut_at PA5162_rmlD_at PA5136_rmlA_at

PA5304_dadA_at PA5383_at Ig_326671_3272284_at

PA0069_at PA0082_at PA0083_at PA0124_at PA0161_at PA0224_at

PA0286_at PA0353_ilvD_at PA0410_pilI_at PA0412_pilK_at PA0413_at PA0526_at

PA0558_at PA_0669_at PA0670_at PA0731_at PA0765_mucC_at PA0906_at

PA0910_at PA0911_at PA0933_ygcA_at PA0938_at PA1048_at PA1431_rsaL_at

PA1541_at PA1588_sucC_at PA1589_sucD_at PA1746_at PA2277_arsR_at PA2290_ged_at

PA238-1_at PA2445_gcvP2_at PA2639_nuoD_at PA2640_nuoE_at PA2641_nuoF_at PA2642_nuoG_at

PA2643_nuoH_at PA2646_nuoK_at PA2648_nuoM_at PA2664_fhp_at PA2667_at PA2705_at

C.(83) PA2706_at PA2718_at PA2788_at PA2796_tal_at PA2846_at PA2869_at

PA2946_at PA2948_cobM_at PA3011_atopA_t PA3012_at PA3013_foaB_at PA3066_at

PA3067_at PA3181_at PA3392_nosZ_at PA3471_at PA3567_at PA3575_at

PA3620_mutS_at PA3859_at PA3972_at PA3973_at PA4006_at PA4007_proA_at

PA4045_at PA4046_at PA4061_at PA4068_at PA4180_at PA4440_at

PA4493_at PA4499_at PA4625_at PA4803_at PA4812_fdnG_at PA4919_pncB1_at

PA5479_gltP_at PA5496_at PA5557_atpH_at PA5564_gidB_at PA5565_gidA_at

PA0510_at PA0515_at PA0561_nirF_at PA0518_nurM_at PA0520_nirQ_at PA0764_mucB_at

D.(12) PA0766_mucA_at PA1423_lasI_at PA2830_htpX_at PA3971_at PA4810_fdnI_at PA5429_aspA_at

PA0201_at PA0280_cysA_at PA0281_cysW_at PA0283_sbp_at PA0284_at PA0396_pilU_at

E.(12) PA0524_norB_at PA2599_at PA3446_at PA3450_at PA3931_at PA4443_cysD_at

PA0045_at PA0179_at PA0432_sahH_at PA0546_metK_at PA0547_at PA0671_at

PA1132_at PA1423_at PA1587_lpdG_at PA1865_at PA2644_nuoI_at PA2658_at

F.(25) PA2662_at PA2663_at PA3472_at PA3551_algA_at PA3747_at PA4033_at

PA4630_at PA4971_at PA5203_gshA_at PA5250_at PA5251_at PA5252_at

PA5483_algB_at

G.(3) PA0517_nirC_at PA0519_nirS_at PA0807_at

�Overlapping gene groups (probe set ID) are colored as the Venn diagram showing in Fig 6D.

https://doi.org/10.1371/journal.pone.0216401.t002
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Discussion

Anaerobic A-NO2
- sensitivity: intuitive and nonintuitive gene products

involved in its defense

ThemucA22 allele in PA is the most common mutation (deletion of a C residue at position 430)

found during the course of chronic CF and COPD, resulting in a truncated MucA protein of

~15.8 kDa and resulting mucoid conversion (alginate-overproduction). A little over 13 years ago,

we discovered that mucoid,mucA22mutant PAwere uniquely susceptible to A-NO2
- at the

slightly acidic pH that is consistent with that of the CF (pH 6.4–6.5 [9, 66] and COPD airway sur-

face liquid [67], effectively revealing a previously unrecognized “Achilles heel” of these highly

refractory organisms. This weakness was a significant translational development given that

mucA22 organisms are formidably antibiotic- and phagocyte-resistant. Prior to that work, two

seminal papers describing the anaerobic biofilm mode of growth in CF were published in 2002 [8,

13]. Since then, dedicated research efforts have ensued to unravel the biology of the ever-evolving

organisms cultured from anaerobic CF and COPD airway biofilms. In addition, the slightly acidic

nature of CF and COPD airways allows for A-NO2
- to be reduced to NO, that we have shown is

known to kill not onlymucA22mutant PA, but also S. aureus (MRSA) and B. cepacia [29].

Thus, given these clinically relevant and translational developments (U.S. Patent #

8,557,300 B2 by corresponding author), the primary goal of this study was to identify addi-

tional genes involved in A-NO2
- sensitivity or resistance. Using both transposon and strategic

insertion or deletion mutagenesis approaches, a series of mutants displaying the aforemen-

tioned traits were discovered. First, we showed that the major catalase, KatA, is required for

anaerobic A-NO2
- resistance because of its surprisingly inherent ability to buffer the NO

derived from A-NO2
- reduction [48]. Second, a mutant defective in the rhl quorum sensing

circuit regulator (rhlR), that we have also found previously to commit an anaerobic suicide by

overproduction of endogenous respiratory NO in biofilms [8], was also found to be sensitive

to exogenous anaerobic A-NO2
-. Other genes that were necessary for optimal A-NO2

-

Table 3. Identification of SNO proteins from the different bacteria used in this study. For example, the fold change in spot 2A (FdnG) in the mucA22 mutant is

2.2-fold more S-nitrosylated than wild-type bacteria.

Spot ID Gene/protein name Fold change�

mucA22 vs PAO1 ΔmucA vs PAO1 ΔmucA vs mucA22
Up Down Up Down Up Down

2A fdnG 2.2 - 2.4 - - -

2B fdnG 13 - 6.3 - - 2.1

5 ygbM - - - - - 1.5

6A nrdJB - 1.4 - - 1.3 -

6B nrdJB - 1.9 - 1.6 1.2 -

7 priC or opdA 1.7 - 1.7 - - -

8 algD - - 1.5 - 1.5 -

10 uspK - 1.7 - 2.4 - 1.4

11 Vfr - 6.7 - 7.1 -

13 nirS - - - 2.3 - 2.1

15 oprH - 3.2 - - 2.9 -

17 prpB or bcpA - 1.2 1.4 - 1.7 -

18 nirQ 1.7 - - - - 1.7

19 galU - 1.4 - 1.3 - -

� = Relative SNO protein expression levels.

https://doi.org/10.1371/journal.pone.0216401.t003
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resistance included another quorum sensing regulator gene, pmpR (regulator of the Pseudomo-
nas quinolone signal (PQS), [68]), lon (encoding the Lon protease), PA4455 (a putative ABC

transporter, [47]), and nrdJa,b (encoding anaerobic ribonucleotide reductase). The Lon prote-

ase has previously been shown to be required for optimal activity of Fhp (flavohemoglobin), an

aerobically expressed flavohemoglobin with aerobic but not anaerobic NO detoxifying proper-

ties [69, 70]. Thus, it makes perfect sense that the PA0779 (asrA, a Lon peptidase) mutant is

also sensitive to A-NO2
-. However, the most intriguing results of this study and given the pre-

dominance of mucA mutations from predominantly CF and to a lesser extent COPD were

from A-NO2
- sensitivity and insensitivity results comparing mucA22 vs. ΔmucA bacteria, the

latter of which was found to be paradoxically resistant to it in planktonic, biofilm and during a

chronic murine lung infection. Thus, the remainder of this study focused on understanding

the mechanism underlying this puzzling development.

Microarray and SNO protein analyses and interpretations upon exposure

of bacteria to A-NO2
-

To better understand why wild-type and ΔmucA strains were less sensitive to A-NO2
- than

mucA22 bacteria, we strategically performed transcriptional profiling of wild-type, mucA22

Fig 7. A-NO2
- sensitivity of anaerobic planktonic PAO1 (diamonds) mucA22 mutant (squares) with secondary

mutations in uspK (strikethrough squares) and fdnG (triangles). We must note that there were no observable

differences in the growth patterns of mucA22 and the double mutants.

https://doi.org/10.1371/journal.pone.0216401.g007

Role of MucA in acidified nitrite sensitivity in P. aeruginosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0216401 June 3, 2019 14 / 33

https://doi.org/10.1371/journal.pone.0216401.g007
https://doi.org/10.1371/journal.pone.0216401


and ΔmucA strains exposed to anaerobic A-NO2
-. We found that wild-type bacteria and the

ΔmucA mutant had far higher transcriptional levels of protective nir (encoding NIR), nor
(encoding NOR) and fhp (encoding flavohemoglobin) genes when compared to the very low

transcription of such genes in the mucA22 mutant. This is consistent with the very low tran-

scription of nir and nor genes in anaerobic clinical isolate FRD1 (a mucA22 mutant) exposed

to A-NO2
- as we have described previously [9]. In addition, many nuo genes (encoding NADH

dehydrogenase) were also upregulated in the ΔmucA mutant. It is not surprising that the

nuoABDFHIJKMN genes are also required for anaerobic growth with both NO3
- and NO2

- as

terminal electron acceptors [71, 72]. Thus, the wild-type and ΔmucA mutant have a greater

ability to detoxify both NO2
- and NO. Another interesting observation from the transcrip-

tional profiling was that wild-type PAO1 and the muc22 mutant have normal expression of

mucD, the last gene of the algT/U operon, but the ΔmucA mutant has 5-fold less expression.

MucD is a periplasmic protease that serves as a weak negative regulator of AlgW protease,

which senses periplasmic stress, leading to cleavage/activation of MucA [73]. This alteration in

the AlgT(U) (σ22) pathway might affect expression of nir, nor, and fhp genes, which is currently

under investigation. However, the ΔmucA strain has 27 extra amino acids than the mucA22
mutant, begging the question as to whether these amino acids are involved in the anaerobic

respiratory pathway vis a vis protection against NO.

To complement our transcriptomic data, our S-nitrosylation analysis also revealed mecha-

nistic clues from the protein level. As a reminder, S-nitrosylation is a mechanism of signal

Fig 8. Position of Arg300 in the structure of PA NorB. Ribbon representation of NorB (PDB:3o0r) [65] in two orientations. Arg300 is show in stick format.

Helix IV is colored red and the heme centers are show in spacefill. Arg300 hydrogen bonds to the mainchain carbonyl of Lys288 is shown in the right panel.

https://doi.org/10.1371/journal.pone.0216401.g008
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transduction in eukaryotes based upon a covalent bond between NO and cysteine residues,

thereby serving as a post-translational modification [74]. In bacteria, however, S-nitrosylation

can actually be used to trigger anaerobic gene transcription mediated, as seen by SNO-medi-

ated activation of OxyR in E. coli [75]. The most S-nitrosylated proteins (an event that can

compromise protein function) have significant links to the overall anaerobic respiratory cas-

cade of PA. These include NrdG (a regulator of nrdJa,b genes), NirS (NIR), NirQ [76], NrdJa

(anaerobic ribonucleotide reductase (RNR)) and NuoL (NADH dehydrogenase chain L).

Other than nirS, it should be noted that all of the aforementioned genes are essential for anaer-

obic growth [77], especially the Class II RNRs [78]. Thus, we believe that S-nitrosylation is a

consequence of exposure to A-NO2
-. However, we also believe that the NO generated by

A-NO2
- reduction overwhelms the machinery involved in the transcription of the protective

norCB genes (encoding NO reductase). In 2007, we showed that high (~16 μM) endogenous

levels of NO inactivate the ANR/DNR regulatory cascade in a norCB mutant, leading to abys-

mally poor growth under anaerobic conditions [50].

What could be the mechanism of A-NO2
- toxicity in anaerobic mucA22

mutant PA relative to that of a ΔmucA mutant?

There are at least five possible mechanisms of cell injury and death from A-NO2
- in mucA22

mutant bacteria, (a) inhibition of heme-enzyme(s), (b) destruction of iron-sulfur (Fe-S) cen-

ters (e.g., the master anaerobic transcriptional regulator ANR, an NO-sensitive 4Fe-4S cluster

protein, [50]), (c) disruption of cellular iron homeostasis (with a,b,c being primarily via the

formation of dinitrosyliron complexes [48]), (d) oxidative injury (upon introduction to an aer-

obic environment), and (e) protein adduction (nitration, nitrosation). NO reacts with only

two groups of species under biological conditions, other radicals (such as O2 and O2
•-) and

transition metals. At first glance (however vide infra), oxygen radical-based death can be ruled

out because of the strict anaerobiosis enforced in these studies given the fact that both CF and

COPD airways have anaerobic airway pockets, leaving likely transition metal interactions as

the major mechanism(s) of NO toxicity. Most cellular metal ions are “shielded” from NO and

thus are not likely targets. The “classic” metal targets are iron and heme-containing (those

with an open ligation position), Fe-S centers, and the “chelatable iron pool” (CIP) [79–84].

Final questions that urgently need answers

What might be the biological functions of MucA vs. MucA22: are there potentially other

binding partners during anaerobic growth other than the extracytoplasmic sigma factor,

AlgT(U) and the periplasmic negative regulator MucB? The most intriguing finding of this

work was the discovery that mucA22 and ΔmucA bacteria behave very differently vis a vis
A-NO2

- susceptibility patterns. Our results suggest that the 15.8 kDa truncated MucA22 pro-

tein has an unknown function that is possibly to dysregulate the anaerobic respiratory regula-

tory and enzymatic genetic circuitry. In support of this notion, and based upon this pioneering

work, we have previously shown that NIR and NOR genes are dramatically down-regulated in

mucA22 bacteria relative to wild-type organisms [9]. As a final attempt to build the hypothe-

sis-driven platform for a future study, we elected to use bioinformatic techniques to elucidate

further clues as to why mucoid mucA mutants are more sensitive to A-NO2
- than wild-type,

nonmucoid bacteria. To accomplish this goal, our microarray data were analyzed to identify

differentially expressed genes (DEGs) between three conditions (anaerobic PA, mucA22 and

ΔmucA exposed to 15 mM A-NO2
-, pH 6.5 in pairs. The significant DEGs were selected by the

criteria that fold change values are larger than two and the p-value is lower than 0.05. We also

compared the significant DEGs under each comparison design based upon the microarray
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data and looked for overlapping genes to investigate if the transcriptional profile changes were

contributing to the hypersensitivity of A-NO2
- in mucA22 mutant bacteria when compared to

wild-type and ΔmucA). The functional annotation clustering of the gene set was conducted by

DAVID to see if any functional pathway was related with alternative gene expression. If the

overlapping genes were also found in the mucA22 vs. ΔmucA analyses, it indicates that the

genes expressed differently should have a tight interaction with MucA. To elucidate the mech-

anism underlying A-NO2
- sensitivity as well as identifying potential interacting partners of

MucA, we searched an on-line PA PAO1 protein-protein interaction (PPI) database (http://

research.cchmc.org/PPIdatabase) using the query word MucA. This database contains predic-

tion results by a random forest classifier that was trained on nine genomic features (co-essenti-

ality, co-expression, co-functionality, co-localization, domain-domain interaction, co-pathway

involvement, transmembrane helices, co-operon and co-gene cluster involvement, [85]). This

assessment resulted is a large-scale PPI network in PA with significant coverage and high accu-

racy, i.e., 57,746 potential protein interactions covering 4,256 PA PAO1 proteins [86]. Among

the DEGs, we selected the potential PPI partners of MucA from the interactome database. By

querying MucA in the database, we found 17 proteins with which it is predicted to interact (S5

Table, Fig 9). We also searched the STRING database (https://string-db.org) for MucA interac-

tors. The top 20 interactors of high confidence interaction with MucA were used for the fol-

lowing analysis. Five proteins are in common between the interactors predicted by two

sources. In total, 32 MucA interactors were predicted (S6 and S7 Tables). We then investigated

if these interactors changed expression in the ΔmucA or mucA22 mutants compared to wild

type PAO1. Five interactors were found significantly altered expression in PA vs ΔmucA,

including three muc genes (mucBCD), algA and nirC, respectively. In contrast, when PAO1

gene expression was compared to the mucA22 mutant, only levels of algA and nirC transcrip-

tion were found significantly changed. Interestingly, only the nirC gene was found differen-

tially expressed in all three strains comparisons. In fact, nirC expression was highest in the

mucA22 mutant and down-regulated in the ΔmucA mutant when compared to PAO1 expres-

sion. This pattern indicates that the expression of the nirC gene is more likely to be influenced

by any changes in the mucA gene, and the expression level may be correlated to the A-NO2
-

sensitivity phenotype. We identified possible anaerobic binding partners for MucA, NirC and

NirM. Both NirC and NirM are periplasmic c-type cytochromes that are known to donate elec-

trons to NIR, thereby promoting efficient anaerobic respiration [87]. These data indicate that

there is a distinct possibility that anaerobic MucA22 has a function other than binding to AlgT

(U) and MucB. Relatedly, an anaerobic protein “interactome” has been shown linking the pri-

mary motility protein, flagellin (FliC) with NirS and DnaK [88]. Very complex yet interesting

biology was revealed in the aforementioned work. First, a nirS mutant could not form a flagel-

lum and as such was impaired in swimming motility. Conversely, if the flagellum and anaero-

bic respiration are coordinately regulated in an as yet unappreciated pathway, then a fliC
mutant should be impaired in anaerobic respiration—which was not the case. The other inter-

esting feature between flagellar expression and mucoidy is that fliC is repressed by the AlgT

(U)-dependent regulator AmzR that directly represses the fleQ gene, the product of which is

required for fliC transcription [89]. We have previously shown that mucoid mucA22 mutant

bacteria grow poorly anaerobically because they harbor dramatically lower respiratory NAR

and NIR activity [9].

Closing remarks

Finally, this multi-disciplinary study revealed a fascinating paradox in that ΔmucAmutant bac-

teria possess an anaerobic A-NO2
—resistant phenotype relative to that of mucA22 mutant
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bacteria. This is consistent with the myriad of strains (>300) that have been sequenced in sev-

eral studies indicating that that no mucoid strains would be classified as true deletion mutants

and we could not engineer a complete deletion despite numerous attempts [9, 35]. Given the

numerous discoveries and scientific disciplines used in this study, we elected to provide a syn-

opsis flow chart that is detailed in Fig 10 as a refresher and eliminate any potential confusion.

This figure is divided into (i) initial screen, (ii) unexpected discovery, (iii) mechanistic evalua-

tion and (iv) future studies. Lastly, future studies are designed to identify putative anaerobic

MucA and potentially MucA22 binding partners in the context of better understanding the

important translational implications of A-NO2
- treatment for killing of highly refractory air-

way infectious bacteria in CF and COPD.

Fig 9. Integrated protein interaction networks. A. Inset. Simplified version of the integrated protein interaction networks. B. Fifteen proteins encoded by

the genes involved in A-NO2
- sensitivity (green nodes; overlapping DEGs of PA vs mucA22 and ΔmucA vs mucA22) and 32 predicted MucA interactors (red

nodes) were used to build an integrated protein interaction network. The genes labeled in red were also found differentially expressed between PA vs ΔmucA.

https://doi.org/10.1371/journal.pone.0216401.g009
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Materials and methods

Bacterial strains and growth conditions

All bacteria, including newly constructed mutants and plasmids used in this study are listed in

Table 4. Organisms were routinely grown in either Luria-Bertani broth (L-broth) or L-broth

plus 100 mM KNO3 (LBN) or LBN pH 6.5 which is LBN containing 50 mM potassium phos-

phate. Aerobic cultures were grown at 37˚C with shaking at 250 rpm at a 1/10 volume to total

Erlenmeyer flask ratio. Media were solidified with 1.5% Bacto-agar. Bacteria were grown

Fig 10. Flow chart of the scientific progress in this study split into (i) initial screen, (ii) unexpected discovery, (iii) mechanistic evaluation and (iv) future

studies sections. Green arrows indicate upregulated genes while the red arrows indicate down-regulated genes. NAR, nitrate reductase; NIR, nitrite reductase;

NOR, NO reductase; NOS, nitrous oxide reductase. The future studies diagram is an inner (IM) and outer (OM) of nonmucoid and mucoid PA with AlgT(U),

MucA, MucA22 and MucB in their known cellular locations [90].

https://doi.org/10.1371/journal.pone.0216401.g010
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under anaerobic conditions at 37˚C in a dual-port Coy Laboratories anaerobic chamber. Fro-

zen bacterial stocks were stored at -80˚C in a 1:1 mixture of 30% glycerol and stationary-phase

bacterial suspension.

Manipulation of recombinant DNA and genetic techniques

All plasmid and chromosomal nucleic acid manipulations were performed by standard tech-

niques [99]. Plasmid DNA was transformed into E. coli strain DH5α (Protein Express, Cincin-

nati, OH). To detect the presence of insert DNA, X-Gal (5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside; 40 μg/ml) was added to agar media. Restriction endonucleases, the Klenow

fragment of DNA polymerase I, T4 DNA polymerase, and T4 DNA ligase were used as speci-

fied by the vendor (Invitrogen/ Gibco-BRL Corp., Gaithersburg, MD). Plasmid DNA was

Table 4. Bacterial strains, plasmids and oligonucleotides used in this study.

Strain, plasmid or

oligonucleotide

Description (relevant genotype or phenotype) or sequence (50 to 30) Company source or

reference

E. coli
DH5α F- F80dlacZΔM15 endA1 recA1 hsdR17(rK- mK

-) supE44 thi-1 gyrA96 Δ(lacZYA-argF)U169 Invitrogen

S17-1 λ pir Pro− Res− Mod+ recA; integrated RP4-Tet : : Mu-Kan : : Tn7, Mob+ [91]

P. aeruginosa
PAO1 Wild-type laboratory strain [92]

FRD1 Mucoid CF clinical isolate with mucA22 allele [93]

mucA22 PAO1 mucA22 mutant, mucoid [94]

ΔmucA PAO1ΔmucA mutant (Δ157–194) (Hassett and Schurr labs) This study

mucA22 uspK mucA22, uspK::TnGm This study

mucA22 fdnG mucA22, fdnG::TnGm This study

moaA2 moaA2::TnGm This study

PA4455 PA4455::Gm [47]

PA0964 PA0964::TnGm This study

PA0450 PA0450::TnGm This study

rhlR rhlR::Gm [52]

norCB norCB::Gm [50]

lon lon::TnGm This study

nuoK nuoK::TnGm This study

Plasmids

pBT20 Mini-Tn delivery vector, ApR, GmR [95]

pUCGM Source for Gmr cassette, ApR, GmR [96]

pEX100T-KS Pseudomonas gene replacement suicide vector with modified multiple cloning site, sacB, oriT, CbR [97]

pEXO100T GmR cassette from pUCGM was inserted into unique ScaI site of pEX100T-KS, sacB, oriT, GmR This study

pEXO100TΔmucA 1kb upstream and downstream fragments flanking mucA gene were cloned into pEXO100T, sacB,

oriT, GmR
This study

pHERD20T Escherichia-Pseudomonas shuttle vector, ApR [98]

pHERDmucA mucA cloned into pHERD20T This study

Nucleotides

AD2 50-cangctwsgtntscaa

Gm447 50-gtgcaagcagattacggtgacgat

Gm464 50-tgacgatcccgcagtggctctc

ApR, ampicillin resistant; CbR, carbenicillin resistant; GmR, gentamicin resistant

https://doi.org/10.1371/journal.pone.0216401.t004
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isolated by using plasmid miniprep isolation kits (Qiagen), and restriction fragments were

recovered from agarose gels by using SeaPlaque low-melting-point agarose (FMC BioProducts,

Rockland, ME). PCRs were performed by using Pfu DNA polymerase (BRL) and appropriate

primers in an MJ Research thermal cycler, with 30 cycles of denaturation (2 min, 94˚C),

annealing (1 min, 54˚C), and extension (1 min 30 s, 72˚C). Amplified DNA fragments were

gel purified, cloned into pCR2.1 (Invitrogen), and sequenced.

Methods used to construct PA mutant strains

Screening of more sensitive or resistance A-NO2
- strains using Transposon (Tn) muta-

genesis. PA strain PAO1 was subjected to transposon (Tn) mutagenesis using the mariner

transposon vector, pBT20 [95]. The transposon within pBT20 was conjugally transferred by

biparental mating using E. coli S17-1 λ pir into strain PAO1 as previously described [95]. An

overnight broth culture of the donor strain (2 ml of stationary phase culture) and 0.5 ml of the

recipient strain were clarified by centrifugation and resuspended in 0.5 ml of L-broth. This

concentrated suspension was then spotted on the center of a L-broth plate, allowed to dry, and

incubated for ~18 hr at 37˚C. Mating mixtures were scraped and resuspended in 1 ml of L-

broth. Suspensions (300 μl) were spread evenly onto Pseudomonas isolation agar (PIA) con-

taining gentamicin (Gm) at 150 μg/ml and incubated at 37˚C for 48 hr. The resulting growth

was scraped from the plate and resuspended in 2 ml of 0.9% saline and serial dilutions plated

onto freshly prepared LBN plates, pH 6.5 containing 15 mM acidified NaNO2 (A-NO2
-).

Transposon insertion sites were determined through sequencing the flanking region of the

transposon by a semi-random PCR method, as described previously [100] using random

primer AD2 and transposon-specific primer Gm447, followed by the nested primers Gm464

and AD2 (Table 1). Individual colonies were patched to L-broth plates and L-broth A-NO2
-,

pH 6.5 plates containing 15 mM KNO3 with either 15 mM or 25 mM NaNO2 for selection of

sensitive and resistance strains, respectively. Cells were grown aerobically for 24 hr and anaer-

obically for up to 48 hr. Those organisms that grew on the 25 mM NaNO2 plates were consid-

ered A-NO2
- resistant while cells that did not grow on 15 mM NaNO2 plates were considered

A-NO2
—sensitive. Confirmation of the A-NO2

- sensitive or resistance phenotype was followed

by an A-NO2
- killing assay by enumeration of remaining CFU after treatment. Briefly, the

overnight culture was diluted 1000-fold into L-broth pH 6.5, 50 mM phosphate buffer contain-

ing either 15 mM KNO3 or 15 mM NaNO2, respectively. Cell viability was monitored daily for

3 days. All experiments were performed at least 3 times and reproducible mutants were then

assessed for the identity of the specific gene interrupted by the transposon. The genomic DNA

was isolated and the identification of the transposon integration site was initiated by semi-ran-

dom PCR. The resulting PCR amplification products were subjected to DNA sequence analysis

at the Cincinnati Children’s Hospital DNA core (Cincinnati, OH).

Allelic exchange and sucrose counter-selection for construct of mutants. The strategy

for insertional inactivation of PA genes (Table 1) was facilitated by gene disruption with an

850-bp GmR cassette from pUCGM (52), and the gene replacement vector pEX100T-KS (29),

the latter of which allowed for selection of double-crossover events within putative recombi-

nants cultured on agar containing 5–6% sucrose. To facilitate construction of an unmarked

nonpolar mucA deletion mutant, the GmR cassette from pUCGM was inserted into unique

ScaI site of pEX100T-KS, creating plasmid pEXO100T. Approximately 1 kb of upstream and

downstream fragments of the mucA gene was PCR amplified, and cloned into the HindIII and

SpeI sites of pEXO100T. The resultant plasmid, pEXO100TΔmucA, was used to construct a

mucA deletion mutant (herein termed ΔmucA) that contained a downstream constitutive pro-

moter to ensure transcription of the mucB gene. All mutants were confirmed by DNA
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sequencing of amplified PCR products. Two independent mucA deletion mutants from the D.

J.H. and M.J.S. laboratories were also confirmed by Illumina sequencing (S1 Fig) and the con-

tigs were assembled using the PATRIC alignment program. Other mutants that we suspected

to be sensitive to A-NO2
- from previous studies and our own literature-based hypotheses are

also listed in Table 4. Some other mutants listed in Table 4 were also constructed using this

method.

Planktonic culture measurements of A-NO2
- sensitivity. Overnight cultures of PA and

various Tn and/or allelic exchange mutants were 1:100 diluted into either LB broth (pH 6.5) or

LBN broth (pH 6.5, the pH of CF airway surface liquid, [9]) supplemented with varying con-

centrations of NaNO2 (0, 5, 10, 15, 20, 25 and 30 mM, hence the term A-NO2
-) and grown

anaerobically for 48 hr. Five μl of cells from each culture was serially diluted and spotted onto

LB agar plates and incubated aerobically for 24 hr at 37˚C. The plates were then scanned for

enumeration of CFU. (ii) Some strains were also cultured anaerobically for 72 hr in LBN broth

(pH 6.5) supplemented with either 0, 20, or 25 mM NaNO2 for strain PAO1, ΔmucA and

mucA22 mutants, as well as mucA22 uspK and mucA22 fdnG, respectively. Cultures were pro-

cessed daily, and serial cell dilutions were spotted onto L-agar plates. Surviving bacteria were

enumerated after a 24 hr incubation at 37˚C.

Anaerobic biofilm A-NO2
- sensitivity measurements. Bacteria were grown aerobically

in LB broth to stationary phase followed by a 1:100 dilution into 3 ml of LBN in confocal

friendly glass bottomed chambers (Costar). Static bacterial biofilms were allowed to develop

under anaerobic condition as previously described [8]. After 24 hr, biofilms were washed with

sterile PBS to remove planktonic cells, and fresh LBN broth (pH 6.5) containing 15 mM KNO3

(control), or 15 mM KNO3 plus 15 mM NaNO2 was added to the bacteria biofilm cultures.

The biofilms were then incubated under anaerobic conditions for an additional of 48 hr,

washed 2 times with PBS, and stained with Live/Dead BacLight bacterial viability kit (Invitro-

gen, Eugene, OR). Biofilm images were viewed by confocal laser scanning microscopy using a

Zeiss LSM 710 confocal microscope and visualized the live cells in green and the dead cells in

red. The excitation and emission wavelengths for green fluorescence (live cells) were 488 nm

and 500 nm, while those for red fluorescence (dead cells) were 490 nm and 635 nm, respec-

tively. All biofilm experiments were repeated at least 3 times independently. The live/dead

ratio of the biofilms were calculated using imageJ 1.46r software following the guidelines by

the University of Chicago Integrated Light Microscopy Core. The results are presented as the

differences in the dead/live ratio comparing A-NO2
-treated versus control conditions.

Transcriptional profiling using Affymetrix GeneChips of PA, mucA22 and ΔmucA
strains exposed to A-NO2

-. PA, mucA22 and ΔmucA bacteria were grown anaerobically for

24 hr in LBN, pH 6.5, followed by the addition of 15 mM NaNO2 (A-NO2
-) for an additional

20 min. Organisms were then pelleted by centrifugation at 13,000 x g for 5 min and the pellets

resuspended in RNAlater (Ambion) to prevent bacterial RNA degradation and to stabilize the

bacterial mRNA. To assess quantitative gene expression analysis of PA, Affymetrix GeneChips

were used. RNA from PA was isolated by using Qiagen RNeasy columns according to the man-

ufacturer’s protocol for isolation of total RNA. RNA from three independent samples was iso-

lated for hybridization on three independent Pseudomonas GeneChips. Once the RNA was

eluted from the Qiagen RNeasy column, then RNA was treated with 2 U of DNase I (Ambion)

for 15 min at 37˚C. The reaction was stopped by the addition of 25 μl of DNase stop solution

(50 mM EDTA, 1.5 M sodium acetate and 1% SDS). The DNase I was removed by phenol/

chloroform extraction followed by ethanol precipitation. The approximate amount of RNA

isolated was quantified using spectrophotometer. To determine the quality of the RNA, sam-

ples were analyzed on an Agilent bioanalyzer 2100. The quality of RNA was determined by

examining the 16S and 23S rRNA bands on the electrophoretogram that should be at a 1:1
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ratio. Ten μg of total RNA was used for cDNA synthesis, fragmentation and labeling according

to the Affymetrix GeneChip PA Genome Array Expression Analysis pProtocol. Briefly, ran-

dom hexamers (Invitrogen) were added (final conc. 25 ng/μl) to the 10 μg of total RNA along

with in vitro transcribed B. subtilis control spikes (as described in the Affymetrix GeneChip

PA Genome Array Expression Analysis Protocol). cDNA was synthesized using Superscript II

(Invitrogen) according to the manufacturer’s instructions under the following conditions:

25˚C for 10 min, 37˚C for 60 min, 42˚C for 60 min, 70˚C for 10 min. RNA was removed by

alkaline treatment and subsequent neutralization. The cDNA was purified by a QIAquick PCR

purification kit (Qiagen) and eluted in 40 μl of elution buffer (10 mM Tris-HCl, pH 8.5). The

cDNA was then fragmented by DNase I (0.6 U per μg cDNA, Amersham) at 37˚C for 10 min

and end-labeled with Biotin-ddUTP using the Enzo BioArray Terminal Labeling kit (Affyme-

trix) at 37˚C for 60 min. Proper cDNA fragmentation and biotin labeling were determined by

gel mobility shift assay using NeutrAvadin (Pierce) and on a 5% polyacrylamide gel stained

with SYBR Green I (Roche). The labeled cDNA was hybridized to the Affymetrix Pseudomonas
GeneChip according to the manufacturer’s protocol. Microarray data was generated using

Affymetrix (www.affymetrix.com) protocols as we have done previously [72, 101]. We used

Affymetrix data previously obtained from PA grown from three independent samples as the

control for gene expression comparisons.

Microarray data analysis. Microarray data were generated and analyzed using Affymetrix

protocols as previously described [102–104]. Probe set summarization (.CHP) files were gener-

ated using the Affymetrix MicroArray Suite 5.0 (MAS 5.0) algorithm. The absolute expression

transcript levels were normalized for each chip by globally scaling all probe sets to a target sig-

nal intensity of 500. Three statistical algorithms (detection, change call, and signal log ratio)

were used to identify differential gene expression in experimental and control samples. The

decision of a present, absent, or marginal identification for each gene was determined by using

MicroArray Suite software (version 5.0; Affymetrix). Those transcripts that received an

“absent” designation were removed from further analysis. A t test was used to isolate those

genes whose transcriptional profile was statistically significant (P< 0.05) between the control

and experimental conditions. Pair-wise comparisons between the individual experimental and

control chips were done by batch analyses using MicroArray Suite to generate a change call

and signal log ratio for each transcript. A positive change was defined as a call whereby more

than 50% of the transcripts increased or marginally increased for up-regulated genes or

decreased or marginally decreased for down-regulated genes. Lastly, the median value of the

signal log ratios for each comparison was calculated and only transcripts that had a value

greater than or equal to 1 for up-regulated and less than or equal to 1 for down-regulated

genes were placed on the final list of transcripts whose profile had changed. The signal-log

ratio was converted and expressed as the change (n-fold). The microarray data are available on

the GEO (Gene Expression Omnibus) website at http://www.ncbi.nlm.nih.gov/projects/geo

(GEO accession no. GSE128220).

Bioinformatic analysis of differential gene expression

The microarray data were analyzed to identify differentially expressed genes (DEGs) between

three conditions (anaerobic PA, mucA22 and ΔmucA exposed to 15 mM A-NO2
-, pH 6.5 for

20 min) in pairs. The significant DEGs were selected by the criteria that fold change values are

larger than two and the p-value is lower than 0.05. To elucidate the mechanism underlying

A-NO2
- sensitivity as well as identifying potential interacting partners of MucA, we searched

an online PA PAO1 protein-protein interaction (PPI) database (http://research.cchmc.org/

PPIdatabase) using the query word MucA. This database contains prediction results by a
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random forest classifier that was trained on eight genomic features (co-essentiality, co-expres-

sion, co-functionality, co-localization, domain-domain interaction, co-pathway involvement,

transmembrane helices, co-operon and co-gene cluster involvement). The result is a large-

scale PPI network in PA with significant coverage and high accuracy, i.e., 57,746 potential pro-

tein interactions covering 4,256 PA PAO1 proteins [86]. Among the DEGs, we selected the

potential PPI partners of MucA from the interactome database. We also compared the signifi-

cant DEGs under each comparison design and looked for overlapping genes, to investigate if

the transcriptional profile changes were contributing to the hypersensitivity of A-NO2
- in

mucA22 mutant bacteria when compared to wild type and ΔmucA). The functional annotation

clustering of the gene set was conducted by DAVID to see if any functional pathway was

related with alternative gene expression. If the overlapping genes were also found in the

mucA22 vs. ΔmucA analyses, it indicates that the genes expressed differently should have a

tight interaction with MucA. Among the DEGs, we selected the PPI partners for MucA from

the interactome database. We also searched the STRING database (https://string-db.org) for

predicted MucA interacting partners. The top 20 interactors with high confidence were used

for in our analysis. To investigate if the transcriptional profile changes were contributing to

the hypersensitivity of A-NO2
- in mucA22 comparing to wild type and ΔmucA, we also com-

pared the significant DEGs under each comparison design and looked for overlapping genes.

The Go function enrichment of the gene set was conducted on the overlapping DEGs and the

predicted MucA interactors, in order to see if any functional pathway was related with altered

gene expression.

Identification of anaerobic S-nitrosylated proteins in PA, mucA22 and

ΔmucA strains using the SNOSID technique (SNO Site Identification)

PA PAO1, mucA22 and ΔmucA were grown in L-broth under aerobic conditions at 37˚C for

18 hr. Bacteria were then further diluted 1000-fold in L-broth, pH 6.5 (50 mM potassium phos-

phate) containing 15 mM KNO3 for 24 hr under anaerobic conditions. Bacteria were then

exposed to 15 mM NaNO2 for 1 hr. The cell pellet was lysed with B-PER plus 0.1 mM EDTA

and 0.5 mM PMSF at room temperature for 10 min. Next, identical protein levels were used to

evaluate S-nitrosylation using the “biotin switch” method as described by Jaffrey and Snyder

[105]. Briefly, protein lysates were placed in blocking solution (2.5% SDS and 0.1% metha-

nethiosulfonate, MMTS) prepared in dimethylformamide (DMF) with 9 volumes of HEN

buffer (250 mM HEPES-NaOH pH 7.7, 1 mM EDTA and 0.1 mM neocuproine) in the dark at

50˚C for 20 min with frequent vortex. The excess MMTS was removed by precipitation with 3

volumes of cold acetone. After centrifugation, the protein pelleted was washed with 70% cold

acetone 4 times and then resuspended into HEN buffer containing 1% SDS, 2.5 mg/ml biotin-

HPDP and 200 mM sodium ascorbate. The mixtures were incubated in the dark at 25˚C for 1

hr with intermittent vortex. The biotinylated nitrosothiols proteins were then precipitated

with acetone. Again, after washing 4 times with 70% cold acetone, the protein pelleted was dis-

solved in 0.1X HEN buffer containing 1% SDS and 3 volumes of neutralization buffer (20 mM

HEPES, pH 7.7, 100 mM NaCl, 1 mM EDTA, and 0.5% Triton X-100) was added followed by

50 μl of pre-washed avidin affinity resin. The mixture was then incubated at 4˚C for 18 hr. The

resin was extensively washed 4 times with 1 ml of washing buffer (20 mM HEPES, pH 7.7, 600

mM NaCl, 1 mM EDTA, and 0.5% Triton X-100) and the resin was fully dried via gentle aspi-

ration with a 28-gauge needle. Bound protein was then eluted with 50 μl of elution buffer (20

mM HEPES, pH 7.7, 100 mM NaCl, 1 mM EDTA, 100 mM 2-mercaptoethanol). The samples

were concentrated and desalted using Amicon1 Ultra centrifuge filter devices (3 K) and the

buffer exchanged 2 times with 50 μl of GE Healthcare Life Sciences DeStreak buffer. The
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protein concentration was determined using a Pierce 660 nm protein assay and prepared for

2-dimensional gel electrophoresis. Then, 27 μg of purified protein was loaded onto 7 cm IPG

strips, pH 3–10 NL (non-linear) and subjected to electrophoresis according to a standardized

procedure for the Invitrogen zoom apparatus with no streaking in the first dimension. After

running denaturing polyacrylamide gel electrophoresis (SDS-PAGE) for the second dimen-

sion, proteins were visualized after silver staining. Gel images were compared using Progenesis

SameSpots V3.2 software ((Nonlinear Dynamic, Inc., Durham, NC). The protein spots that

revealed significant differences in pairs between PA and mucA22, PA and ΔmucA, or mucA22
and ΔmucA were then analyzed using matrix-assisted laser desorption ionization-time of flight

(MALDI-TOF) mass spectrometry. The proteins were then identified by searching the Swiss-

Prot PA mass spectrometric database.

Alginate assays

Selected bacteria were grown in L-broth under aerobic conditions for 24 hr at 37˚C with shak-

ing at 250 rpm. The alginate isolation and assay was performed base on the protocol of Ma et.

al., [106] with minor modifications. Briefly, the overnight bacterial cultures were mixed 1:1

ratio with PBS and then centrifugation at 16,000 x g for 10 min. One volume of 2% cetylpyridi-

nium chloride was added to the supernatant to precipitate the alginate. After centrifugation at

the same speed for 5 min, he pelleted was resuspended in 2 volumes of 1 M NaCl and alginate

was precipitated using 2 volumes of cold isopropanol. After centrifugation and air drying, the

alginate pellet was resuspended in 200 μl of saline. Alginate concentration as mg/ml was calcu-

lated using the carbozole assay [107].

Infection of mouse airways and effects of A-NO2
- on bacterial viability

Six-week old male Balb/C mice (8 per cohort) were purchased from Harlan Laboratories, Inc.

Approximately ~5 x 106 of isogenic mucA22 or ΔmucA strains were resuspended in 0.9% saline

containing purified PA alginate at final concentration of 1.1 mg/ml and used 50 μl to inject

into mouse tracheas nonsurgically using a 21-gauge ball-end needle to the back of the tongue

above the tracheal opening as previously described [108]. The successful delivery of bacteria

into the lungs was manifested by a slight gag reflex by the mice exhibited immediately after

instillation followed by a pattern of rapid breathing. After 24 hr of incubation, mouse lungs

were instilled with 25 μl of 15 mM A-NO2
- at pH 6.5 (in 0.1 M phosphate buffer) intranasally

twice daily. On the fifth day, the mice were sacrificed, and the viable bacteria from serially

diluted lung homogenates were enumerated.

Ethics statement

All animal studies were performed in accordance with the protocols approved by the Animal

Care Committee at the University of Illinois at Champagne-Urbana. The animal study was car-

ried out in strict accordance with the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The protocol was approved by the

Institutional Animal Care and Use Committee (IACUC) at the University of Illinois at

Urbana-Champaign (Protocol Number: 15171).
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S1 Fig. Two independently generated mucA deletions mapped to an identical position on

the PAO1 genome. PAO1 ORFs, PA PAO1 open reading frames; Red boxes indicate the

mucA deletion regions. A. PAO1 ΔmucA (M.J.S. lab), Illumina reads from PAO1 ΔmucA
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aligned to the PAO1 chromosome from the Schurr laboratory; B. PAO1 ΔmucA (D.J.H.), Illu-

mina reads aligned to PAO1 from PAO1 ΔmucA from corresponding author Hassett’s labora-

tory. C. Alignment of wild-type, mucA22 and ΔmucA alleles.

(TIF)

S2 Fig. 2-D gel Western blots for SNO proteins in anaerobically grown strains treated with

15 mM A-NO2
-. A. PAO1; B. mucA22; C. ΔmucA. SNO-proteins were separated using Immo-

biline DryStrip pH 3–10 NL (non-linear) gels and then silver stained. SNO-proteins revealing

differences in signal intensity from each set of protein spots were extracted from the gels and

identified by mass spectrometry. The identification of each circled protein is listed in Table 3

with the fold up or down values given.

(TIF)

S1 Table. Fold change in gene expression of anaerobic PAO1 vs. mucA22 upon exposure to

15 mM A-NO2
-. The change up/down are values in the mucA22 mutant relative to that of

strain PAO1. IG, intragenic region.

(DOCX)

S2 Table. Fold change in gene expression of anaerobic PAO1 vs. ΔmucA upon exposure to

20 mM A-NO2
-. The change up/down are values in the ΔmucA mutant relative to that of strain

PAO1.

(DOCX)

S3 Table. Fold change in gene expression of anaerobic mucA22 vs. ΔmucA bacteria upon

exposure to 15 mM A-NO2
-. The change up/down are values in the ΔmucA mutant relative to

that of strain mucA22.

(DOCX)

S4 Table. Inability of the FRD1 norCB genes to complement an anaerobic growth defect of

a PAO1 norCB mutant.

(DOCX)

S5 Table. Overlapping differentially expressed genes (DEGs) in 3 comparisons.

(DOCX)

S6 Table. Predicted interactors of MucA. Differentially expressed genes (DEGs) are in red.

(DOCX)

S7 Table. GO function enrichment of overlapping DEGs in mucA22 vs ΔmucA and PAO1

vs mucA22, and predicted MucA interactors.

(DOCX)
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