225 research outputs found

    A Dose of Reality: Overcoming Usability Challenges in VR Head-Mounted Displays

    Get PDF
    We identify usability challenges facing consumers adopting Virtual Reality (VR) head-mounted displays (HMDs) in a survey of 108 VR HMD users. Users reported significant issues in interacting with, and being aware of their real-world context when using a HMD. Building upon existing work on blending real and virtual environments, we performed three design studies to address these usability concerns. In a typing study, we show that augmenting VR with a view of reality significantly corrected the performance impairment of typing in VR. We then investigated how much reality should be incorporated and when, so as to preserve users’ sense of presence in VR. For interaction with objects and peripherals, we found that selectively presenting reality as users engaged with it was optimal in terms of performance and users’ sense of presence. Finally, we investigated how this selective, engagement-dependent approach could be applied in social environments, to support the user’s awareness of the proximity and presence of others

    Employment and Disability Policy: the role of the psychologist

    Get PDF
    Persons with minor or major disabilities represent a significant portion of the U.S. working-age population. Based on the 1993 Survey of Income and Program Participation (SIPP), approximately 30 million (19%) men and women 18 to 64 years of age report some type of physical or mental limitation. For approximately 55% of these individuals (about 10% of those 18 to 64), the limitations are severe

    A multiscale framework for disentangling the roles of evenness, density, and aggregation on diversity gradients

    Get PDF
    Ecology published by Wiley Periodicals LLC on behalf of Ecological Society of America Disentangling the drivers of diversity gradients can be challenging. The Measurement of Biodiversity (MoB) framework decomposes scale-dependent changes in species diversity into three components of community structure: species abundance distribution (SAD), total community abundance, and within-species spatial aggregation. Here we extend MoB from categorical treatment comparisons to quantify variation along continuous geographic or environmental gradients. Our approach requires sites along a gradient, each consisting of georeferenced plots of abundance-based species composition data. We demonstrate our method using a case study of ants sampled along an elevational gradient of 28 sites in a mixed deciduous forest of the Great Smoky Mountains National Park, USA. MoB analysis revealed that decreases in ant species richness along the elevational gradient were associated with decreasing evenness and total number of species, which counteracted the modest increase in richness associated with decreasing spatial aggregation along the gradient. Total community abundance had a negligible effect on richness at all but the finest spatial grains, SAD effects increased in importance with sampling effort, and the aggregation effect had the strongest effect at coarser spatial grains. These results do not support the more-individuals hypothesis, but they are consistent with a hypothesis of stronger environmental filtering at coarser spatial grains. Our extension of MoB has the potential to elucidate how components of community structure contribute to changes in diversity along environmental gradients and should be useful for a variety of assemblage-level data collected along gradients

    Measurement of Biodiversity (MoB): A method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change

    Get PDF
    Little consensus has emerged regarding how proximate and ultimate drivers such as productivity, disturbance and temperature may affect species richness and other aspects of biodiversity. Part of the confusion is that most studies examine species richness at a single spatial scale and ignore how the underlying components of species richness can vary with spatial scale. We provide an approach for the measurement of biodiversity that decomposes changes in species rarefaction curves into proximate components attributed to: (a) the species abundance distribution, (b) density of individuals and (c) the spatial arrangement of individuals. We decompose species richness by comparing spatial and nonspatial sample- and individual-based species rarefaction curves that differentially capture the influence of these components to estimate the relative importance of each in driving patterns of species richness change. We tested the validity of our method on simulated data, and we demonstrate it on empirical data on plant species richness in invaded and uninvaded woodlands. We integrated these methods into a new r package (mobr). The metrics that mobr provides will allow ecologists to move beyond comparisons of species richness in response to ecological drivers at a single spatial scale toward a dissection of the proximate components that determine species richness across scales

    Thermodynamic and cloud parameter retrieval using infrared spectral data

    Get PDF
    High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL)

    Mabel Engineering Flights, 2010-2013: Flight Report

    Get PDF
    In December 2010, NASA deployed for the first time the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne simulator for Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) algorithm development. Between 2010 and 2013, engineering flights were conducted in the continental United States, to ready the instrument for deployments to Alaska and Iceland, where flight lines could be designed and flown over sea ice and grounded ice. Ultimately, MABEL engineering missions included: 1) flights based out of NASA Armstrong Flight Research Center (California, formerly Dryden Flight Research Center) in 2010, 2011, and 2012; flights based out of NASA Wallops Flight Facility (Virginia) in 2012; flights based out of NASA Langley Research Center (Virginia) in 2013; and flights based out of the Mojave Air and Space Port (California) in 2013

    Intrinsic Photoconductivity of Few-layered ZrS2 Phototransistors via Multiterminal Measurements

    Get PDF
    We report intrinsic photoconductivity studies on one of the least examinedlayered compounds, ZrS2.Few-atomic layer ZrS2 field-effect transistorswere fabricated on the Si/SiO2 substrate and photoconductivity measurements were performed using both two- and four-terminal configurationsunder the illumination of 532 nm laser source. We measured photocurrentas a function of the incident optical power at several source-drain (bias)voltages. We observe a significantly large photoconductivity when measured in the multiterminal (four-terminal) configuration compared to thatin the two-terminal configuration. For an incident optical power of 90nW, the estimated photosensitivity and the external quantum efficiency(EQE) measured in two-terminal configuration are 0.5 A/W and 120%,respectively, under a bias voltage of 650 mV. Under the same conditions,the four-terminal measurements result in much higher values for both thephotoresponsivity (R) and EQE to 6 A/W and 1400%, respectively. Thissignificant improvement in photoresponsivity and EQE in the four-terminal configuration may have been influenced by the reduction of contactresistance at the metal-semiconductor interface, which greatly impacts thecarrier mobility of low conducting materials. This suggests that photoconductivity measurements performed through the two-terminal configurationin previous studies on ZrS2 and other 2D materials have severely underestimated the true intrinsic properties of transition metal dichalcogenides andtheir remarkable potential for optoelectronic applications

    Automatic wide complex tachycardia differentiation using mathematically synthesized vectorcardiogram signals

    Get PDF
    BACKGROUND: Automated wide complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) may be accomplished using novel calculations that quantify the extent of mean electrical vector changes between the WCT and baseline electrocardiogram (ECG). At present, it is unknown whether quantifying mean electrical vector changes within three orthogonal vectorcardiogram (VCG) leads (X, Y, and Z leads) can improve automated VT and SWCT classification. METHODS: A derivation cohort of paired WCT and baseline ECGs was used to derive five logistic regression models: (i) one novel WCT differentiation model (i.e., VCG Model), (ii) three previously developed WCT differentiation models (i.e., WCT Formula, VT Prediction Model, and WCT Formula II), and (iii) one all-inclusive model (i.e., Hybrid Model). A separate validation cohort of paired WCT and baseline ECGs was used to trial and compare each model\u27s performance. RESULTS: The VCG Model, composed of WCT QRS duration, baseline QRS duration, absolute change in QRS duration, X-lead QRS amplitude change, Y-lead QRS amplitude change, and Z-lead QRS amplitude change, demonstrated effective WCT differentiation (area under the curve [AUC] 0.94) for the derivation cohort. For the validation cohort, the diagnostic performance of the VCG Model (AUC 0.94) was similar to that achieved by the WCT Formula (AUC 0.95), VT Prediction Model (AUC 0.91), WCT Formula II (AUC 0.94), and Hybrid Model (AUC 0.95). CONCLUSION: Custom calculations derived from mathematically synthesized VCG signals may be used to formulate an effective means to differentiate WCTs automatically

    Evidence from GC-TRFLP that Bacterial Communities in Soil Are Lognormally Distributed

    Get PDF
    The Species Abundance Distribution (SAD) is a fundamental property of ecological communities and the form and formation of SADs have been examined for a wide range of communities including those of microorganisms. Progress in understanding microbial SADs, however, has been limited by the remarkable diversity and vast size of microbial communities. As a result, few microbial systems have been sampled with sufficient depth to generate reliable estimates of the community SAD. We have used a novel approach to characterize the SAD of bacterial communities by coupling genomic DNA fractionation with analysis of terminal restriction fragment length polymorphisms (GC-TRFLP). Examination of a soil microbial community through GC-TRFLP revealed 731 bacterial operational taxonomic units (OTUs) that followed a lognormal distribution. To recover the same 731 OTUs through analysis of DNA sequence data is estimated to require analysis of 86,264 16S rRNA sequences. The approach is examined and validated through construction and analysis of simulated microbial communities in silico. Additional simulations performed to assess the potential effects of PCR bias show that biased amplification can cause a community whose distribution follows a power-law function to appear lognormally distributed. We also show that TRFLP analysis, in contrast to GC-TRFLP, is not able to effectively distinguish between competing SAD models. Our analysis supports use of the lognormal as the null distribution for studying the SAD of bacterial communities as for plant and animal communities
    • …
    corecore