104 research outputs found

    Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors

    Get PDF
    Objective: Stromal cell-derived factor-1 (SDF-1/CXCL12), the main ligand for CXCR4, is overexpressed in human cancer. This study addressed the precise contribution of SDF-1 to gastric carcinogenesis. Design: SDF-1 transgenic mice were created and a Helicobacter-induced gastric cancer model was used in combination with H/K-ATPase-IL-1β mice. Gastric tissue was analysed by histopathology and cells isolated from the stomach were analysed by molecular biological methods. Results: Analysis of the H/K-ATPase/SDF-1 transgenic (SDF-Tg) mice showed that SDF-1 overexpression results in significant gastric epithelial hyperproliferation, mucous neck cell hyperplasia and spontaneous gastric dysplasia (wild-type mice 0/15 (0%) vs SDF-Tg mice 4/14 (28.6%), p=0.042, Fisher exact test) but has minimal effects on inflammation. SDF-Tg mice also showed a dramatic expansion of α-smooth muscle actin-positive myofibroblasts and CXCR4-expressing gastric epithelial cells in the progenitor zone, both of which preceded the development of significant gastritis or dysplasia. Gremlin 1-expressing mesenchymal stem cells, the putative precursors of myofibroblasts, were also increased within the dysplastic stomachs of SDF-Tg mice and showed chemotaxis in response to SDF-1 stimulation. SDF-1 overexpression alone resulted in minimal recruitment of haematopoietic cells to the gastric mucosa, although macrophages were increased late in the disease. When SDF-Tg mice were crossed with H/K-ATPase-IL-1β mice or infected with Helicobacter felis, however, there were dramatic synergistic effects on recruitment of bone marrow-derived cells and progression to preneoplasia. Conclusion: Activation of the SDF-1/CXCR4 axis can contribute to early stages of carcinogenesis primarily through recruitment of stromal cells and modulation of the progenitor niche

    Progastrin stimulates colonic cell proliferation via CCK2R- and β-arrestin-dependent suppression of BMP2

    Get PDF
    Background & Aims Progastrin stimulates colonic mucosal proliferation and carcinogenesis through the cholecystokinin 2 receptor (CCK2R) - partly by increasing the number of colonic progenitor cells. However, little is known about the mechanisms by which progastrin stimulates colonic cell proliferation. We investigated the role of bone morphogenetic proteins (BMPs) in progastrin induction of colonic cell proliferation via CCK2R. Methods We performed microarray analysis to compare changes in gene expression in the colonic mucosa of mice that express a human progastrin transgene, gastrin knockout mice, and C57BL/6 mice (controls); the effects of progastrin were also determined on in vitro colonic crypt cultures from cholecystokinin 2 receptor knockout and wild-type mice. Human colorectal and gastric cancer cells that expressed CCK2R were incubated with progastrin or Bmp2; levels of β-arrestin 1 and 2 were knocked down using small interfering RNAs. Cells were analyzed for progastrin binding, proliferation, changes in gene expression, and symmetric cell division. Results The BMP pathway was down-regulated in the colons of human progastrin mice compared with controls. Progastrin suppressed transcription of Bmp2 through a pathway that required CCK2R and was mediated by β-arrestin 1 and 2. In mouse colonic epithelial cells, down-regulation of Bmp2 led to decreased phosphorylation of Smads1/5/8 and suppression of inhibitor of DNA binding 4. In human gastric and colorectal cancer cell lines, CCK2R was necessary and sufficient for progastrin binding and induction of proliferation; these effects were blocked when cells were incubated with recombinant Bmp2. Incubation with progastrin increased the number of CD44+, bromodeoxyuridine+, and NUMB+ cells, indicating an increase in symmetric divisions of putative cancer stem cells. Conclusions Progastrin stimulates proliferation in colons of mice and cultured human cells via CCK2R- and β-arrestin 1 and 2-dependent suppression of Bmp2 signaling. This process promotes symmetric cell division. © 2013 by the AGA Institute

    Krt19\u3csup\u3e+\u3c/sup\u3e/Lgr5\u3csup\u3e-\u3c/sup\u3e Cells Are Radioresistant Cancer-Initiating Stem Cells in the Colon and Intestine

    Get PDF
    Epithelium of the colon and intestine are renewed every 3 days. In the intestine there are at least two principal stem cell pools. The first contains rapid cycling crypt-based columnar (CBC) Lgr5+ cells, and the second is composed of slower cycling Bmi1-expressing cells at the +4 position above the crypt base. In the colon, however, the identification of Lgr5- stem cell pools has proven more challenging. Here, we demonstrate that the intermediate filament keratin-19 (Krt19) marks long-lived, radiation-resistant cells above the crypt base that generate Lgr5+ CBCs in the colon and intestine. In colorectal cancer models, Krt19+ cancer-initiating cells are also radioresistant, while Lgr5+ stem cells are radiosensitive. Moreover, Lgr5+ stem cells are dispensable in both the normal and neoplastic colonic epithelium, as ablation of Lgr5+ stem cells results in their regeneration from Krt19-expressing cells. Thus, Krt19+ stem cells are a discrete target relevant for cancer therapy

    Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis

    Get PDF
    Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I(2) (PGI(2)) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair

    Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer

    Get PDF
    CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) expand in the spleen during cancer and promote progression through suppression of cytotoxic T cells. An anti-inflammatory reflex arc involving the vagus nerve and memory T cells is necessary for resolution of acute inflammation. Failure of this neural circuit could promote procarcinogenic inflammation and altered tumour immunity. Here we show that splenic TFF2, a secreted anti-inflammatory peptide, is released by vagally modulated memory T cells to suppress the expansion of MDSCs through CXCR4. Splenic denervation interrupts the anti-inflammatory neural arc, resulting in the expansion of MDSCs and colorectal cancer. Deletion of Tff2 recapitulates splenic denervation to promote carcinogenesis. Colorectal carcinogenesis could be suppressed through transgenic overexpression of TFF2, adenoviral transfer of TFF2 or transplantation of TFF2-expressing bone marrow. TFF2 is important to the anti-inflammatory reflex arc and plays an essential role in arresting MDSC proliferation. TFF2 offers a potential approach to prevent and to treat cancer

    CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis

    Get PDF
    Objective Progastrin is the incompletely cleaved precursor of gastrin that is secreted by G-cells in the gastric antrum. Both gastrin and progastrin bind to the CCK2 receptor (Cckbr or CCK2R) expressed on a subset of gastric epithelial cells. Little is known about how gastrin peptides and CCK2R regulate gastric stem cells and carcinogenesis. Interconversion among progenitors in the intestine is documented, but the mechanisms by which this occurs are poorly defined. Design We generated CCK2R-CreERT mice and performed inducible lineage tracing experiments. CCK2R+ antral cells and Lgr5+ antral stem cells were cultured in a three-dimensional in vitro system. We crossed progastrin-overexpressing mice with Lgr5-GFP-CreERT mice and examined the role of progastrin and CCK2R in Lgr5+ stem cells during MNU-induced carcinogenesis. Results Through lineage tracing experiments, we found that CCK2R defines antral stem cells at position +4, which overlapped with an Lgr5neg or low cell population but was distinct from typical antral Lgr5high stem cells. Treatment with progastrin interconverts Lgr5neg or low CCK2R+ cells into Lgr5high cells, increases CCK2R+ cell numbers and promotes gland fission and carcinogenesis in response to the chemical carcinogen MNU. Pharmacological inhibition or genetic ablation of CCK2R attenuated progastrin-dependent stem cell expansion and carcinogenesis. Conclusions CCK2R labels +4 antral stem cells that can be activated and expanded by progastrin, thus identifying one hormonal trigger for gastric stem cell interconversion and a potential target for gastric cancer chemoprevention and therapy

    Findings in young adults at colonoscopy from a hospital service database audit

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background Colorectal cancer (CRC) diagnosed at <50 years is predominantly located in the distal colon and rectum. Little is known about which lesion subtypes may serve as CRC precursors in young adults. The aim of this work was to document the prevalence and histological subtype of lesions seen in patients aged <50 years, and any associated clinical features. Methods An audit of the colonoscopy database at The Queen Elizabeth Hospital in Adelaide, South Australia over a 12-month period was undertaken. Findings were recorded from both colonoscopy reports and corresponding histological examination of excised lesions. Results Data were extracted from colonoscopies in 2064 patients. Those aged <50 comprised 485 (24%) of the total. CRC precursor lesions (including sessile serrated adenoma/polyps (SSA/P), traditional serrated adenomas, tubular adenomas ≥10 mm or with high-grade dysplasia, and conventional adenomas with villous histology) were seen in 4.3% of patients aged <50 and 12.9% of patients aged ≥50 (P <0.001). Among colonoscopies yielding CRC precursor lesions in patients under 50 years, SSA/P occurred in 52% of procedures (11/21), compared with 27% (55/204) of procedures in patients aged 50 and older (P = 0.02). SSA/P were proximally located in (10/11) 90% of patients aged under 50, and 80% (43/54) of those aged 50 and older (P = 0.46). Conclusions SSA/P were the most frequently observed CRC precursor lesions in patients aged <50. Most CRCs in this age group are known to arise in the distal colon and rectum suggesting that lesions other than SSA/P may serve as the precursor for the majority of early-onset CRC

    CXCR4-expressing Mist1\u3csup\u3e+\u3c/sup\u3e progenitors in the gastric antrum contribute to gastric cancer development

    Get PDF
    Mist1 was recently shown to identify a discrete population of stem cells within the isthmus of the oxyntic gland within the gastric corpus. Chief cells at the base of the gastric corpus also express Mist1. The relevance of Mist1 expression as a marker of specific cell populations within the antral glands of the distal stomach, however, is unknown. Using Mist1-CreERT mice, we revealed that Mist1+ antral cells, distinct from the Mist1+ population in the corpus, comprise long-lived progenitors that reside within the antral isthmus above Lgr5+ or CCK2R+ cells. Mist1+ antral progenitors can serve as an origin of antral tumors induced by loss of Apc or MNU treatment. Mist1+ antral progenitors, as well as other antral stem/progenitor population, express Cxcr4, and are located in close proximity to Cxcl12 (the Cxcr4 ligand)-expressing endothelium. During antral carcinogenesis, there is an expansion of Cxcr4+ epithelial cells as well as the Cxcl12+ perivascular niche. Deletion of Cxcl12 in endothelial cells or pharmacological blockade of Cxcr4 inhibits antral tumor growth. Cxcl12/Cxcr4 signaling may be a potential therapeutic target

    Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential

    Get PDF
    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs)

    Exploiting differential Wnt target gene expression to generate a molecular biomarker for colorectal cancer stratification

    Get PDF
    OBJECTIVE Pathological Wnt pathway activation is a conserved hallmark of colorectal cancer. Wnt-activating mutations can be divided into: i) ligand-independent (LI) alterations in intracellular signal transduction proteins (, β-catenin), causing constitutive pathway activation and ii) ligand-dependent (LD) mutations affecting the synergistic R-Spondin axis (, -fusions) acting through amplification of endogenous Wnt signal transmembrane transduction. Our aim was to exploit differential Wnt target gene expression to generate a mutation-agnostic biomarker for LD tumours. DESIGN We undertook harmonised multi-omic analysis of discovery (n=684) and validation cohorts (n=578) of colorectal tumours collated from publicly available data and the Stratification in Colorectal Cancer Consortium. We used mutation data to establish molecular ground truth and subdivide lesions into LI/LD tumour subsets. We contrasted transcriptional, methylation, morphological and clinical characteristics between groups. RESULTS Wnt disrupting mutations were mutually exclusive. Desmoplastic stromal upregulation of may compensate for absence of epithelial mutation in a subset of stromal-rich tumours. Key Wnt negative regulator genes were differentially expressed between LD/LI tumours, with targeted hypermethylation of some genes (, ) occurring even in CIMP-negative LD cancers. mRNA expression was used as a discriminatory molecular biomarker to distinguish LD/LI tumours (area under the curve >0.93). CONCLUSIONS Epigenetic suppression of appropriate Wnt negative feedback loops is selectively advantageous in LD tumours and differential expression in LD/LI lesions can be exploited as a molecular biomarker. Distinguishing between LD/LI tumour types is important; patients with LD tumours retain sensitivity to Wnt ligand inhibition and may be stratified at diagnosis to clinical trials of Porcupine inhibitors
    corecore