16 research outputs found

    Centrifuge-operated specimen staining method and apparatus

    Get PDF
    A method of staining preselected, mounted specimens of either biological or nonbiological material enclosed within a staining chamber where the liquid staining reagents are applied and removed from the staining chamber using hypergravity as the propelling force. In the preferred embodiment, a spacecraft-operated centrifuge and method of diagnosing biological specimens while in orbit, characterized by hermetically sealing a shell assembly. The assembly contains slide stain apparatus with computer control therefor, the operative effect of which is to overcome microgravity, for example on board an International Space Station

    Compact, Automated Centrifugal Slide-Staining System

    Get PDF
    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger

    Myotonometric Measurements of Muscle during Changes in Gravitational Forces

    Get PDF
    Goal: Assess operational characteristics and reliability of the Myotonometer, a portable medical device that quantifies muscle tone and strength, while gravitational forces are changing

    Impact Mediated Loading Cytoplasmic Loading of Macromolecules into Adherent Cells

    Get PDF
    The advent of modern molecular biology, including the development of gene array technologies, has resulted in an explosion of information concerning the specific genes activated during normal cellular development, as well as those associated with a variety of pathological conditions. These techniques have served as a highly efficient, broacI.-based screening approach for those specific genes involved. in regulating normal cellular physiology and identifying candidate genes directly associated with the etiology of specific disease states. However, this approach provides information at the transcriptional' level only and does not necessarily indicate . that the gene in question is in fact translated i~to a protein, or whether or not post-translational modification of the protein occurs. The critical importance of post-translational modification (i.e. phosphorylation, glycosylation, sialyation, etc.) to protein function has been recognized with regard to a number of proteins involved in a variety of important disease states. For example, altered glycosylation of beta-amyloid precursor protein results in an increase in the amount of beta-amyloid peptide generated and hence secreted as insoluble extracellular amyloid deposits (Georgopoulou, McLaughlin et al. 2001; Walter, Fluhrer et al. 2001), a pathological hal1~nark of Alzheimer's disease. Abnormal phosphoryla~ion of synapsin I has been linked to alterations in synaptic vesicle trafficking leading to defective neurotransmission in Huntington's disease (Lievens, Woodman et al. 2002). Altered phosphorylation of the TAU protein involved in microtubule function has been linked to a number of neurodegenative diseases such as Alzheimer's disease (Billingsley and Kincaid 1997; Sanchez, Alvarez-T~llada et a1. 2001). Aberrant siaIyation of cell/I surface antigens has been detected in a number of different tumor cell types and has been linked to the acquisition of a neoplastic phenotype (Sell 1990), while improper' sia1yation of sodium channels in cardiac tissue has been linked to heart failure (Ufret-Vincenty, Baro et al. 2001; Fozzard and Kyle 2002)

    Dynamic Foot Stimulation Attenuates Soleus Muscle Atrophy Induced by Hindlimb Unloading in Rats

    Get PDF
    Unloading-induced myofiber atrophy is a phenomenon that occurs in the aging population, bed-ridden patients and astronauts. The objective of this study was to determine whether or not dynamic foot stimulation (DFS) applied to the plantar surface of the rat foot can serve as a countermeasure to the soleus muscle atrophy normally observed in hindlimb unloaded (HU) rats. Thirty mature adult (6-month-old) male Wistar rats were randomly assigned into ambulatory control (AMB), hindlimb unloaded alone (HU), or hindlimb unloaded with the application of DFS (HU+DFS) groups. A dynamic pattern of pressure was applied to the right foot of each HU animal using a specially fabricated boot containing an inflatable air bladder connected to a solenoid air pump controlled by a laptop computer. The anti-atrophic effects of DFS were quantified morphometrically in frozen cross-sections of soleus muscle stained using the metachromatic-ATPase fiber typing technique. Application of DFS during HU significantly counteracted the atrophic response observed in the soleus by preventing approximately 85% of the reduction in Type I myofiber cross-sectional area (CSA) observed during HU. However, DFS did not protect type II fibers of the soleus from HU-induced atrophy or any fiber type in the soleus muscle of the contralateral control leg of the DFS-treated HU animals. These results illustrate that the application of DFS to the rat foot is an effective countermeasure to soleus muscle atrophy induced by HU
    corecore