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ABSTRACT 

Unloading-induced myofiber atrophy is a phenomenon that occurs In the ag Ing 

population, bed-ridden pati ents and astronauts . The objecti ve of th is study was to 

determine whether or not dynamic foot stimulation (DFS) applied to the plantar surface 

of the rat foot can serve as a countermeasure to the so leus muscle atrophy normally 

observed in hindlimb unloaded (HU) rats . Thirty mature adult (6-month-o ld) male Wistar 

rats were randomly ass igned into ambulatory contro l (AMB), hind limb unloaded a lone 

(HU), or hindlimb unloaded w ith the application of DFS (HU+DFS) groups. A dynamic 

pattern of pressure was appl ied to the ri ght foot of each HU animal using a specia lly 

fabricated boot conta ining an inflatabl e a ir bl adder conn ected to a so lenoid air pump 

contro ll ed by a laptop co mpute r. T he anti-atrophic effects of DFS were quantified 

morphometrica lly in frozen cross-sections of so leus muscle stai ned using the 

metachromati c-ATPase fiber typing technique. Appl ication of DFS du ring HU 

significantly counteracted the at rophic response observed in the soleus by preventing 

approx imate ly 85% of the reduction in Type I myofi ber cross-sectional area (CSA) 

observed during H U. However, D FS did not protect type II fibers of the so leus fi'om HU­

induced atrophy or any fiber type in .the so leus muscle of the contra lateral control leg of 

the DFS-treated HU anim als. These results illustrate that the application of DFS to the rat 

foo t is an effecti ve countermeasure to so leus musc le atrophy induced by HU. 

Key words : dynamic foo t stimulation, sensory receptors, proprioception, skeletal musc le 

atrophy, so leus, mechanica l unl oading, unwe ighting, rat 
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INTRODUCTION 

Mechanical unloading of ske letal mu scle (SKM) during space fli ght or ground­

based ana logues, such as human bedrest and rodent hindlimb un loading (HU) models, 

induces SKM atrophy particularly affecting the anti-g rav ity muscu lature of the lower 

limbs (9, 10) . Atrophy is characterized by a decrease in muscle vo lume, mass and 

strength, a lterati ons in histochemical and pro tein express ion characteristics as well as a 

decrease in neuromuscula r function (4, 5, 14, 23, 24). 

The effects of S KM atrophy have seri ous implicati ons for var ious and diverse 

populations. Astronauts need to mainta in optima l phys ica l performance to dea l with the 

demanding tasks and unexpected situations that they may encounter in space. Bed-ridden 

patients require effect ive rehabili tati on techniques in order to counteract inact ivity­

induced atrophy and fac ilitate the recovery process. T he e lderly requ ire novel 

interventions to suppl ement ex isting phys ica l acti vity approaches designed to retard the 

detrimenta l effects of the agi ng process on the neuromuscu lar system. Therefore, 

des igning and va lidating a s imple and effi c ient countermeasure to inactiv ity- induced 

neuromuscul ar decrements is of paramount importance. 

In the terrestria l environment, the ma intenance of normal muscle function in the 

lower limbs partia lly depends on the interaction between ground reaction forces and 

acti vation of spec ifi c sensory receptors th at transmit these stimu li to the central nervous 

system (6). Under unl oaded conditions, thi s interaction is no longer present resu lting in a 

disruption of the s igna ls norm al transmitted a long the neura l pathways between th e 

sensory receptors, centra l nervous system and effectors. Prev ious research conducted 

during space fli ght in humans ( 17) and on the gro und in both humans (16) and rats (7) 
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has demonstrated that increas ing sensory input by applying pressure to the soles of the 

feet results in an increase in neuromuscu lar activation of the lower limb muscles. These 

studies suggest that sensory input can initiate or enhance motor output even under 

unloaded conditions. More importantly foo t pressure-induced neuromuscular activation 

initiated during unloading has been shown to produce a signi ficant attenuation of so leus 

muscle atrophy (7). 

Although the characteri stics and the spatial localizati on of sensory receptors (i.e. 

cutaneous mechanoreceptors) in both the human (26, 3 1) and the rat foot have been 

adequately described ( 18), in fo rmati on regarding th e potential utility of stimulating these 

receptors in order to ameliorate unloading induced SKM atrophy is scarce. In the study of 

De-Doncker et al. (7), a rat HU model was used to examine the potentia l imp li cations of 

cutaneous mechanoreceptor stimulati on in the prevention of muscle atrophy. Thi s study 

utilized a simple experimental setup consisting of a balloon inflated by a 

sphygmomanometer in contact with the so les of both hindl imb feet in ani mals undergo ing 

HU. Thi s approach was carried out in anestheti zed animals that had been immobi lized in 

a support frame. Considering the integral role played by both peripheral and spinal 

neurons in the proprioceptive path ways acti vated by plantar stimu lation, the use of a 

general anesthetic in th is model may have confounded the proprioceptive response, as has 

been shown to prev iously to be the case fo r a variety of anesthetic agents during 

neuromuscular activati on ( 12) . As such, thi s study did not address the issue of whether 

or not prov iding such stimulation is consistent with the deve lopment of a practica l 

countermeasure to unloading-induced musc le atrophy in otherwise healthy humans. 

I 
~ 
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Therefore, the present study was des igned to investigate whether or not the use of 

a novel stimu lation paradigm/technology known as dynamic foot st imulation COFS), 

capable of applying a dynamic pattern of pressure to the plantar surface of the rat foot in 

fully conscious animals, would counteract the so leus muscle atrophy normally observed 

as a consequence of HU. Uti lizing a miniaturized version of the DFS technology 

previously shown to induce neuromuscular act ivation of the lower limb muscu lature in 

humans (15), a dynamic pattern of pressure was app li ed to the rat foot using a specially 

fabricated boot containing a microprocessor-controlled inflatable a ir bladder worn by a 

conscious, alert animal. We hypothesized that such patterned mechanical stimulation of 

the plantar surface of the rat foot during HU would attenuate unloading-induced SKM 

atrophy due to enhanced leve ls of neuromuscular activation in the hindlimb. Information 

gained from this study wi ll have direct implications for the development of a novel 

countermeasure des igned to prevent the neurom uscular degradation induced by 

gravitationa l unloading . 

l 

---~ 
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EXPERIMENTAL DESIGN AND METHODS 

Animal care 

Thirty mature adult (6-month-old) ma le Wistar rats (Harlan, Ind ianapolis, IN) 

were used in the study. T he anim als were individually housed in a 12-hour light/dark 

cyc le animal facility w ith controlled temperature and humidity. Access to standard 

laboratory rodent chow (Tekland, Harlan, Indianapo lis, IN) and tap water were 

unrestricted throughout the study . Animals were acclimated to the an imal care fac il ity 

seven days before the experiment began . Rats were then randomly divided into three 

groups as follows: a) ambulatory contro ls (AMB), b) hindlimb unl oaded alone (HU), and 

c) hindlimb unloaded w ith the app licat ion of DFS (HU+DFS). A ll use of an imals was 

approved by both the Committee for Anima l Use for Research and Education (CAURE) 

at NASA/Johnson Space Center and the Institutiona l Anima l Care and Use Committee at 

Un ivers ity of Houston, prior to the initi at ion of the study. All procedures were in 

accordance with the guide lines estab li shed by the Public Health Service Policy on 

humane care and use of laboratory anima ls. 

Hindlimb Unloadin g (HU) procedure 

Unloading of the rat hindlimbs was achieved usi ng a modified vers ion of a 

previously described ta il suspens ion protocol ( 19) . Rats were anaesthetised ut il izing a 5% 

isofl urane gas/a ir mixture, placed supine and the ir tails lightly cleaned with 10% 

pov idone iodine. For protection aga inst adh es ive irritation, rat-tails were light ly coated 

w ith tincture of benzo in spray and when dry the tails were covered with a thi n foam pre­

wrap materi a l. Soft and breathable adh e ive first aid tape strips (Nexcare, 3M) were 

app lied to the front and rear s ide of the ta il a long the ta il 's surface, starting just above the 
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hairline and covering about 2/3 the length of the tail. The two ends of the strips were 

threaded through a reformed viny l-coated paper c lip loop and adhered to each other. 

Approximately 1 cm of the proximal end and 10 cm of the distal end of the tail remained 

uncovered to visually assure adequate blood flow within the tail. Rats were observed 

every 2 hours during the first 12 hours of suspension and at no less than 8-hour intervals 

thereafter. The suspension device consisted in an aluminium bar placed laterally across 

the top of the cage on two vertical supporters fixed to the sides of the cage. A brass-

fishing swivel was attached to the bar by a metal hook allowing movement in all 

directions within the cage. The rat was unloaded by attaching the paper c lip to the swivel. 

These pol ycarbonate modified cages allow the animals to move freely and to access all 

areas in the cage using their forelimbs as their on ly mechani sm of movement, while 

leaving the hindlimbs unsupported. Rats were suspended at a 25° ang le from the cage 

floor by adjusting the bar height. The animals were suspended in this fashion for a total 

of 10 days. After termination of the IO-day HU period , rats were deeply anesthetized and 

the so leus muscles were harvested for frozen cross-sectioning followed by morphometric 

analysis as described below. An imals were then euthan ized by intravenous (i.v.) injection 

of Euthasol. 

Dynamic Foot Stimulation (DFS) 

A custom-buil t boot with a bladder that contacted the sole of the foot when 

inflated (Fig. 1) was used to stimulate the sensory receptors in the so les of the rat ' s foot 

in consc ious alert anim als undergoing HU. Due to the "cuff' design of the boot and the 

means by which it was attached to the animals foot (i.e. a Velcro strap), collateral 

stimulation of pressure receptors located on the upper part of the foot cou ld not be 
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prevented. Without removing the animal from the HU position, the DFS boot was 

attached to the foot of the right leg under isoflurane gas anaesthesia (5% isofl urane / 95% 

air mixture) . The animals where then placed back in the HU cage and allowed to fully 

recover from anaesthesia for a period of 20 min. Pressure was applied to the foot by 

inflation/deflation of the latex bladder in contact with the sole of the foot using an 

electronically controlled air pump (WPI, Saratosa, FL) attached to a hose leading to the 

bladder. The pressure s timulation protocol consisted of a 5 sec in flation/5 sec deflation of 

the air bladder for a total of 20 min followed by a 10-min rest interval. This cycle was 

repeated 8 times over a four-hour period during each day of the 10 day HU period. The 

pressure in the bladder during the inflation was 104 mmH g. Pump cycling time and 

duration were controlled by a microprocessor. The boot was mainta ined on the foot only 

during the application of the pressure and was removed every day after the termination of 

the protocol. 

]t has been suggested that to st imulate all types of sensory receptors present 

w ithin the so le of the rat foot, pressure that exceeds their mechanical th reshold (i.e. >8 

mN) needs to be applied (18). In general , a pressure of I kN/m2 (1 mN/mm2
) corresponds 

to a pressure of 7.5 mmH g. Thus, a pressure of 8 mN/mm 2 is equa l to 60 mmHg. Given 

that the mean so le area of the 6-month old male rats used in the study is between 450-500 

mm 2
, the pressure required to stimul ate the entire plantar surface was calculated as 13.9 

mN/mm2 (6255-6950 m N) or 104 mmHg. The specific inflation pressure used in this 

study was chosen because it met the calculated mechanical thresho ld needed to stimu late 

the rat 's foot sensory receptors, yet it did not induce a nocioceptive reaction in the 

_ J 
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ani ma ls. T he total time during which pressure was applied to the foot of the HU rat 

corresponded to 5.6% of the entire 1 O-day HU period . 

Tissue Collection and Process ing 

Rats were deeply anesthetized with an intraperitoneal inj ect ion of an anaesthesia 

mixture (ketamine 40-80 mg/kg body wt and xy lazine 5-1 0 mg/kg body wt at a ratio of 

I: 1). The hair of the lower limbs was shaved up to the knee joint and a small incision was 

made on the backside of the ankle uncovering the Achi lies tendon . Skin was gently 

reflected using blunt-tip forceps to expose the ca lf musc les. The so leus muscle was then 

carefully separated and excised. The excised mu sc les were attached to wooden rods by 

pins inserted through the tendon attachments so that the muscle remained elongated 

w ithout be ing stretched. In preparation for histochemical analysis, the muscle samples 

from the midbelly of the so leus were immersed in T issueTek OCT mounting medium 

(Sakura Finetek, Torrance, CA) frozen in liquid nitrogen-coo led isopentane and stored at 

- 80 0 C. Upon analysis, frozen cross sections (5 flm ) from the soleus musc le were cut 

us ing a Zeiss Mi crom HM 500 OM microtome cryostat and picked up onto Superfrost 

Plus g lass slides (Erie Scientific, Portsmouth , NH). 

Histochemical-Morphometric anal ysis 

Fiber typing on frozen sections was performed utiliz ing the metachromatic dye­

ATPase myofibrillar sta in method or iginally described by Ogilvie and Feeback (20) as 

modified by Konishi el . al. ( 13). This staining method a ll ows identification of four major 

fiber types (type I, II A, lIB and llC) in a sing le musc le cross-section based on se lective 

color production in each individual fiber type . The co lors produced by each myofiber 

type using this method were as fo ll ows: type I (turquoise), type IlA (light pink), type lIB 
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(vio let) and type IIC (b lue) (Fig. 2). Three consecutive cross sections were taken from the 

mid-belly of the soleus muscle for each rat in this study. Two photo frames were taken 

from each section with a digital camera (DeS 420 Kodak) attached to an Axiophot light 

microscope (Zeiss, Germany) so that the complete cross-section of the soleus was 

imaged. Each image was then imported into Adobe Photoshop software (Adobe Systems 

Inc. , San Jose, CA) and the perimeter of each myofiber was delineated by drawing 

around the perimeter in order to produce a digital overlay mask. Each individual 

myofiber type was then assigned a separate co lor scheme by filling in the interior area of 

the outlined myofibers using a defined 256-level color spectrum in Adobe Photoshop. 

The cross sect ional area (CSA) of the four different fiber types in all three sect ions were 

then separately calculated using Object-Image software (NIH, Bethesda, MO) by utilizing 

a color thresholding approach to quanti fy the individually co lored digital representation 

of the different myofiber types in the muscle section. Myofiber eSA and fiber type 

distribution in the soleus muscles were evaluated after analyzing a total of at least 600 

myofibers for each muscle. 

ST A TISTI CAL ANALYSIS 

To evaluate any differences in mean myofiber CSA of different fiber types in the 

soleus musc le among the experimental groups, one-way analysis of var iance (ANOY A) 

was carried out using the SPSS statistica l ana lysis program. When the univariate F test 

was significant, Scheffe's post hoc test was used to further identify significant differences 

in myofiber CSA between the experimental group means (i .e . ambu latory control group, 

HU group and HU+OFS group) for individual myofiber types. To eval uate any 

differences in myofiber CSA of OFS-treated and contra lateral control soleus muscle in 

..J 
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the same HU+OFS animal, a paired Student ' s t-test was applied. Statistical significance 

level was set at P < 0.05. 
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RESULTS 

No significant differences in myofiber CSA of any myofiber type ( i.e. Type I, 

IlA, lIB or 1IC) was detected between the right and left soleus muscles of AMB control 

or HU animals (Table 1). As the DFS apparatus was placed on the right hi ndlimb of the 

animal , all subsequent comparisons between experimental groups (i.e. AMB, HU and 

HU+DFS) were carried out on soleus myofiber CSA values obtained from the right 

hindlimb of the animals only. In addition, Type IIC myofi bers were encountered very 

rarely in any of the experimental gro ups (i.e. Type TIC myofibers were detected in less 

than four animal s per experimental group) . Therefore, Type llC CSA data from soleus 

muscle obtained fro m AMB, HU and HU+DFS animals is not included in our statistical 

analys is scheme (i.e. One-Way ANOYA), rather the mean myofiber CSA data for each 

group are di splayed as a descriptive measure in Table I. 

As expected, after 10 days of H U a s ignificant decrease (P < 0.000 I) of 

approxi mately 42% (4,128 flnl :£ 537 Jim2 
VS. 2,396 flnl :£479 flm 2

) in Type I myofi ber 

CSA in the so leus muscle of HU animals was seen as compared to the so leus muscle of 

the AMB control group (Fig. 3). However, no significant difference in Type I so leus CSA 

was observed between the AMB control and the HU + DFS group (4,128 flm2 :t 53 7 flnl 

VS. 3,717 flnl :t 609 fln/) (Fig. 3). Our results indicate that the DFS protocol was 

respons ible for the prevention of almost all ( i.e. over 85% of the atrophy response in HU 

alone) of the myofiber atrophy norma lly observed in Type I myofibers of the soleus 

muscle after 10 days of HU. However, DFS did not prevent the HU-induced atrophy 

observed in either Type IIA or Type liB myofibers in the rat so leus (Fig. 3). 
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When the Type I myofiber CSA in the so leus muscle from the DFS treated right 

leg and the contralateral control, non-DFS treated left leg from the same HU animals 

were compared (Fig. 4), a significant diffe rence (P < 0.001; paired Student ' s t-test) was 

found. The average Type I fiber CSA in the untreated contra lateral leg (2,499 ± 447 11m2) 

was significantly smaller than that observed in the DFS-treated leg (3,717 ± 609 J..lm2
). 

Unlike Type I fibers however, the CSA of Type IIA and lIB myofibers in DFS-treated 

animals were not s ignificantly different (P > 0.05) from the values observed in HU rats 

(Fig. 4). These data indicate that the effects of DFS are limb-specific and that DFS does 

not appear to induce any systemic anti -atrophic effects on unloaded muscle tissue . 

In addition, no significant differences (P > 0.05) were found among experimental 

groups with regard to so leus muscle composition in term s of percent fiber type, indicating 

that HU a lone nor HU+DFS induced a fiber type shi ft that could be resolved using the 

metachromatic ATPase stain ing technique (Fig. 5). 
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DISCUSSION 

The spec ific aim of this study was to determine whether or not dynamic foot 

stimulation (DFS) app lied to the plantar surface of the rat foot would counteract the 

atrophy in the soleus muscle normally induced by hindlimb unloading. 

Rat HU is an animal model that is w ide ly used to study skeletal muscle (SKM) 

atrophy and other physiological modifications associated with muscle inactivity and 

disuse. It has been demonstrated that HU induces rap id decreases in SKM mass within 

the first week of unloading particularly affecting the antigrav ity soleus muscle (29). The 

10-day suspension protocol used in our study induced significant atrophy in the soleus 

muscle . When suspended rats were compared to ambulatory controls, the CSA decreased 

by 42% in Type I fibers, 32% in Type lIA and 43% in Type lIB (Fig. 3). T hese data 

clearly demonstrate that the app lication of DFS during unloading is a highly efficient 

means of preventing the significant Type I myofiber atrophy normally induced in the 

soleus muscle as a consequence of unloading. However, DFS did not appear to protect 

Type II fibers in the unloaded so leus from atrophy (Figs. 3 & 4). 

There is consensus in the I iteratu re that HU induces a reduct ion in CSA of so leus 

Type I fibers. However contradictory results have been reported as to the degree to which 

HU also induces atrophy in Type II myofibers and whether or not there is myofiber type 

conversion (from slow Type [ to fast Type II ) associated with unl oading. This 

discrepancy in the li teratu re is mainly attributed to the differences in the age and gender 

of the animals used in the studies as wel l as the length of the suspens ion period. The 

average I ife span of the rat is about 28 months. From the data avai lable in the I iterature it 

is apparent that both very young rats (up to 3 months of age) and aged rats (o lder that 20 
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months of age) are more susceptible to unloading-induced SKM atrophy (3 , 8). 

Deschenes et a l. (8) suggested that in youn g rats the alterations in fiber size and type 

might be due to the interference of the unl oading condition with the deve lopmental 

process of the muscle that naturally occurs during the young age (27), while in aged rats 

this might be the result of an increased sensit ivity to the adverse effects of disuse 

associated with the aging process (30) . 

Significant reduct ion in soleus CSA for both Type I and Type II fibers as well as 

slow to fast tw itch transformation of fibers have been demonstrated in 6-week and 3-

month old male rats after two and three weeks of unloading, respectively (2, 22). Other 

investigators, using 17-week o ld male rats tail-suspended for two weeks (28) or 3-months 

and 22-month o ld fema le rats suspended for three weeks (25) also fou nd a significant 

decrease in CSA for both Type I and Type II fibers, yet no change in so leus muscle fiber 

type composition. Deschenes et a l. (8) showed that after 4 weeks of unloading in 22-

month o ld mal e rats, so leus myofiber CSA was decreased by 48% in Type I fibers, 40% 

in Type IIA and 44% in Type IIB fibers, whi le in younger adult 8-month old rats Type I 

myofi ber CSA decreased by only 20%. A conversion of fibers from Type I to Type II 

also occurred in the aged animals, yet there was no fiber type a lteration detected in the 

younger rats. In th is context, the results of our study with respect to soleus muscle fiber 

type composition and fiber CSA using 6-month o ld male rats, are in agreement with the 

findings previously reported in the literature for the animals of this particu lar age ( i.e. 

skeletal muscle from mature adult animals) 

The bas ic concept that mechanical st imulation applied to the soles of the feet 

during unloading cou ld ameliorate muscle atrophy has in part been previously validated . 



·i 

Mechanical foot stimulation prevents muscle atrophy 16 

De-Doncker et al. (7) showed that foot pressure to the so les of the rat feet partially 

prevented soleus muscle atrophy normally induced by 14 days of un loading. In this study 

a pressure of 40 mmHg was applied to the planta r surface of both hindlimbs using a latex 

balloon manua ll y inflated by a sphygmomanometer. Un like our findi ngs however, a 

partial prevention of SKM atrophy was found not only in Type I but also in Type II 

myofibers. T hi s discrepancy may be explained by the use of a less descr iptive 

histochemica l method ( 11) for fiber type c lassification compared to our histochemical 

methodology (20). It was also found that so leus myofiber CSA was s ignificantly 

protected in both Type I and Type II myofi bers but that foot pressure did not prevent the 

transformation of Type I to Type II fiber types in the soleus muscle. An efficient 

preservation of Type I myofiber CSA observed in our present study may be exp lained by 

the longer duration of our protoco l and/or the higher stimulation pressure app lied to the 

rat foot using the DFS technology. 

A second ancillary hypothesis tested in the present study was whether there was a 

systemic effect with regard to musc le CSA preservation assoc iated w ith the application of 

DFS. While the "treatment leg" that experienced DFS in the HU animals showed 

s ignifi cant preservation of Type I myofiber CSA in the so leus, no such protective effects 

on Type I myofiber CSA was observed in the contra latera l leg of the same animal (Fig. 

4) . Rather, Type I myofibers of the so leus in the HU-DFS contralateral control leg 

atrophi ed to the same degree as Type I myofibers of the so leus muscle in the HU-alone 

group (Figs. 3 & 4). These data suggest that DFS has no systemic effect on SKM mass 

preservation, but rath er it is confined to those musc les w ithin the leg undergoing the DFS 

st imulus in contrast to other studies which sti mulate both feet simultaneously (7). 
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The under lying concept behind our study is the well-established motor control 

principle that sensory input (i.e. pressu re application) can modify motor output (i.e. 

neuromuscular activation). Previous research has demonstrated that rat so leus musc le 

electromyographic (EMG) activity was significantly decreased by - 85% (7) during the 

first days of unloading and it was gradually restored after 7-10 days of unloading (I , 21) . 

Interestingly a significant increase in the soleus EMG activity has been observed w hen 

pressure was applied to the plantar surface of the feet in the suspended rats (7). As a 

poss ible explanation for this increased EMG activity the authors proposed that 

st imulation of the cutaneous mechanoreceptors (i.e. Merkel discs, Meissner corpuscles, 

Ruffini endings, Pacinian corpuscles) located in the pl antar surface of the rat ' s feet 

induced an increase in neuromuscul ar activi ty (7), as has also been reported in human 

subj ect ' s under-going s imilar plantar stimulation (15) . A lthough there was no direct 

relationship established between increased EMG activi ty and SKM atrophy attenuat ion it 

is poss ibl e that the application ofDFS facilitated interactions between nerve and muscle, 

thus maintaining neuromuscular interactions between the sensory and motor systems and 

musc le tissue . 

In conclusion, the results of the present study illustrate that external mechanical 

st imulus applied to the rat foot is capable of counteracting unloading- induced soleus 

musc le atrophy . It is postulated that thi s effect is achieved via stimulation of 

proprioceptive pathways that in turn activate appropriate motoneurons to generate motor 

unit contraction mimicking the neuromusc ular activity patterns normally induced by load 

bearing in the terrestria l environment. This underlying concept promises to serve as the 

basis for the development of a novel supplement to currently utilized in-flight exerc ise 
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countermeasures fo r astronauts during space fli ght, as well as an effective rehabi litation 

too l for clinical populations sllch as the bed-ridden or elderl y patients. 
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Table 1 C ross-sectiona l area (CSA) of di fferent myofiber types ident ified using the 
metachromatic ATPase stain in the rat so leus musc le for both right and left legs in 
ambulatory contro l (AMB) and hindlimb unloaded (HU) animals. 

Values are expressed in square mi crometers (11m2) and represent means ± SD; n = 10 rats 

per group. AMB = ambul atory contro l, HU = hindlimb unloaded. No significant 

di ffere nces in myofi ber CSA between the right and left legs of animals with in the same 

experimenta l groups were detected . (*) - Type IIC myofi bers were encountered very 

rare ly in any of the experimental groups ( i. e. Type IlC myofibers were detected in less 

than fo ur anima ls per experimenta l group) . As such, Type II C data for AMB, HU and 

HU+ DFS could not be included in our stati stical analys is other than as a descriptive 

measure. 
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Figure 1 Dynamic Foot Stimulation (DFS) Apparatus. The external s leeve of the DFS 

boot was fabricated using a thin , light, yet durable plastic w ith an integral 

inflatable/deflatable air bladder (1) located beneath the sleeve surface that contacts the 

sole of the rat foot. Velcro restraint straps wrap around the rat foot (2) and around the 

ankle jo int (3) so that the deflated air bladder was in close contact with the sole of the 

foot . The air bladder was connected by a single a ir line (4) to an extremely quiet air pump 

to prevent startling of the animal during operat ion. The bladder was inflated by pumping 

air down the line and then actively deflated by venting the pump. Inflation/deflation 

cycling of the bladder was controlled by a microprocessor-activated electronic valve-

pressure gauge system. The boot fitted snugly on the foot without restricting the natural 

movement of the ankle joint, or its full range of motion. 

Figure 2. Frozen cross-section of a soleus muscle from an ambulatory control rat 

stained using the metachromatic ATPase stain. Sections were pre-incubated at pH 

4.35 and sta ined with to luidine blue as described in the Methods section. On the basis of 

co lor, fiber types were c lassified as Type I (turquoise), Type IIA (light pink), Type JIB 

(violet) and Type IIC (dark blue with dark blue edge). (Bar - 50 11m). 

Figure 3. Cross-sectional area (CSA) of different myofiber types in the soleus muscle 

in Am bulatory, HU and HU+DFS animals. Panel A -Type 1 myofibers, Panel B -Type 

llA myofibers and Panel C - Type lIB myofibers. The CSA of a ll three fiber types in the 

HU group was significantly smaller compared to those in the ambulatory control group 

(P < 0.01; One-Way ANOV A with post-hoc Scheffe test). For Type I fibers only, no 
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s ignificant di ffe rence in CSA was found between the DFS group and the ambulatory 

control group (P > 0.05) in the soleus of the right hindlimb. In the OFS group, the DFS 

boot was attached to the right leg . Va lues are expressed in sq uare micrometers (/-.lm2) and 

represent means ± SD; n = 10 rats per group. AMB = ambulatory control, H U = hindlimb 

unloaded, OFS = hindlimb unloaded + dynamic foot stimulat ion 

Figure 4. Cross-sectional area (CSA) of soleus myofiber types between DFS-treated 

and contralateral control limb in the same a nimal. Values are expressed in square 

micrometers (,...m2
) and represent means ± SD; n = 10 rats per group. Open bar = DFS 

treatment, right leg, Solid Bar = contralateral contro l, left leg. The CSA of so leus Type I 

myofibers in the DFS-treated right leg was s igni ficantly (P < 0.0 I; paired Student t-test) 

greater than the CSA of Type I myofibers in the so leus muscle of the contralateral 

control, left leg of the same animal. No signifi cant di fferences in Type I1A and lIB fiber 

CSA between the right and the left legs were found (P > 0.05 ; Paired t-test). 

Figure 5. Fiber type djstribution in the soleus muscle among trea tment groups. 

Values are expressed in percentage (%) and represent means ± SO; n = 10 rats per group. 

AMB = ambul atory control, HU = hindlimb unloaded, HU+OFS = hindlimb unloaded + 

dynamic foot sti mulation. In the OFS gro up, an infl atable boot is attached to the right leg. 

No significant differences in fiber type di stribution were found among groups (P> 0.05). 
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Figure 4 
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Figure 5 
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