1,771 research outputs found

    Coulomb-interaction effects in full counting statistics of a quantum-dot Aharonov-Bohm interferometer

    Full text link
    We study the effect of Coulomb interaction on the full counting statistics of an Aharonov-Bohm (AB) interferometer with a single-level quantum dot in one arm in the regime of weak dot-lead and lead-lead tunnel couplings. In the absence of Coulomb interaction, the interference processes are of nonresonant nature with an even AB flux dependence and obey bidirectional Poissonian statistics. For large charging energy, the statistic of these processes changes. In addition, processes of resonant nature with an odd flux dependence appear. In the limit of strongly asymmetric tunnel couplings from the dot to the left and right leads, their statistics is found to be strongly super-Poissonian.Comment: 8 pages, 3 figure

    Tunable dynamical channel blockade in double-dot Aharonov-Bohm interferometers

    Full text link
    We study electronic transport through an Aharonov-Bohm interferometer with single-level quantum dots embedded in the two arms. The full counting statistics in the shot-noise regime is calculated to first order in the tunnel-coupling strength. The interplay of interference and charging energy in the dots leads to a dynamical channel blockade that is tunable by the magnetic flux penetrating the Aharonov-Bohm ring. We find super-Poissonian behavior with diverging second and higher cumulants when the Aharonov-Bohm flux approaches an integer multiple of the flux quantum.Comment: published version, 10 pages, 10 figure
    corecore