research

Tunable dynamical channel blockade in double-dot Aharonov-Bohm interferometers

Abstract

We study electronic transport through an Aharonov-Bohm interferometer with single-level quantum dots embedded in the two arms. The full counting statistics in the shot-noise regime is calculated to first order in the tunnel-coupling strength. The interplay of interference and charging energy in the dots leads to a dynamical channel blockade that is tunable by the magnetic flux penetrating the Aharonov-Bohm ring. We find super-Poissonian behavior with diverging second and higher cumulants when the Aharonov-Bohm flux approaches an integer multiple of the flux quantum.Comment: published version, 10 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020