192 research outputs found

    Tau-PET and in vivo Braak-staging as prognostic markers of future cognitive decline in cognitively normal to demented individuals

    Get PDF
    BACKGROUND To systematically examine the clinical utility of tau-PET and Braak-staging as prognostic markers of future cognitive decline in older adults with and without cognitive impairment. METHODS In this longitudinal study, we included 396 cognitively normal to dementia subjects with 18F-Florbetapir/18F-Florbetaben-amyloid-PET, 18F-Flortaucipir-tau-PET and \~ 2-year cognitive follow-up. Annual change rates in global cognition (i.e., MMSE, ADAS13) and episodic memory were calculated via linear-mixed models. We determined global amyloid-PET (Centiloid) plus global and Braak-stage-specific tau-PET SUVRs, which were stratified as positive(+)/negative(-) at pre-established cut-offs, classifying subjects as Braak0/BraakI+/BraakI-IV+/BraakI-VI+/Braakatypical+. In bootstrapped linear regression, we assessed the predictive accuracy of global tau-PET SUVRs vs. Centiloid on subsequent cognitive decline. To test for independent tau vs. amyloid effects, analyses were further controlled for the contrary PET-tracer. Using ANCOVAs, we tested whether more advanced Braak-stage predicted accelerated future cognitive decline. All models were controlled for age, sex, education, diagnosis, and baseline cognition. Lastly, we determined Braak-stage-specific conversion risk to mild cognitive impairment (MCI) or dementia. RESULTS Baseline global tau-PET SUVRs explained more variance (partial R2) in future cognitive decline than Centiloid across all cognitive tests (Cohen's d \~ 2, all tests p < 0.001) and diagnostic groups. Associations between tau-PET and cognitive decline remained consistent when controlling for Centiloid, while associations between amyloid-PET and cognitive decline were non-significant when controlling for tau-PET. More advanced Braak-stage was associated with gradually worsening future cognitive decline, independent of Centiloid or diagnostic group (p < 0.001), and elevated conversion risk to MCI/dementia. CONCLUSION Tau-PET and Braak-staging are highly predictive markers of future cognitive decline and may be promising single-modality estimates for prognostication of patient-specific progression risk in clinical settings

    Decreased CSF Levels of beta-Amyloid in Patients With Cortical Superficial Siderosis

    Get PDF
    Background: Cortical superficial siderosis (cSS) represents a key neuroimaging marker of cerebral amyloid angiopathy (CAA) that is associated with intracranial hemorrhages and cognitive impairment. Nevertheless, the association between cSS and core cerebrospinal fluid (CSF) biomarkers for dementia remain unclear. Methods: One hundred and one patients with probable (79%, 80/101) or possible (21%, 21/101) CAA according to the modified Boston criteria and mild cognitive impairment according to Petersen criteria were prospectively included between 2011 and 2016. CSF analyses of ß-amyloid 42, ß-amyloid 40, total tau and phosphorylated tau were performed using sandwich-type enzyme-linked immunosorbent-assay. All patients received MRI and Mini-Mental-State Examination (MMSE). Logistic regression analysis was used to adjust for possible confounders. Results: cSS was present in 61% (62/101). Of those, 53% (33/62) had disseminated cSS and 47% (29/62) focal cSS. ß-amyloid 42 was lower in patients with cSS than in patients without cSS (OR 0.2; 95% CI 0.08–0.6; p = 0.0052) and lower in patients with disseminated cSS than in those with focal cSS (OR 0.02; 95% CI 0.003–0.2; p = 0.00057). Presence of cSS had no association with regard to ß-amyloid 40, total tau and phosphorylated tau. Conclusions: Our results demonstrate that the presence and extent of cSS are associated with reduced CSF ß-amyloid 42 levels. Further studies are needed to investigate the underlying mechanisms of this association

    Correspondence Between Resting-State and Episodic Memory-Task Related Networks in Elderly Subjects

    Get PDF
    Resting-state fMRI studies demonstrated temporally synchronous fluctuations in brain activity among ensembles of brain regions, suggesting the existence of intrinsic functional networks. A spatial match between some of the resting-state networks and regional brain activation during cognitive tasks has been noted, suggesting that resting-state networks support particular cognitive abilities. However, the spatial match and predictive value of any resting-state network and regional brain activation during episodic memory is only poorly understood. In order to address this research gap, we obtained fMRI acquired both during rest and a face-name association task in 38 healthy elderly subjects. In separate independent component analyses, networks of correlated brain activity during rest or the episodic memory task were identified. For the independent components identified for task-based fMRI, the design matrix of successful encoding or retrieval trials was regressed against the time course of each of the component to identify significantly activated networks. Spatial regression was used to assess the match of resting-state networks against those related to successful memory encoding or retrieval. We found that resting-state networks covering the medial temporal, middle temporal, and frontal areas showed increased activity during successful encoding. Resting-state networks located within posterior brain regions showed increased activity during successful recognition. However, the level of resting-state network connectivity was not predictive of the task-related activity in these networks. These results suggest that a circumscribed number of functional networks detectable during rest become engaged during successful episodic memory. However, higher intrinsic connectivity at rest may not translate into higher network expression during episodic memory

    The left frontal cortex supports reserve in aging by enhancing functional network efficiency

    Get PDF
    Background: Recent evidence from fMRI studies suggests that functional hubs, i.e. highly connected brain regions, are important for mental health. We found recently that global connectivity of a hub in the left frontal cortex (LFC-connectivity) is associated with relatively preserved memory abilities and higher levels of protective factors (education, IQ) in normal aging and Alzheimer’s disease. These results suggest that LFC-connectivity supports reserve capacity alleviating memory decline. An open question is, however, why LFC-connectivity is beneficial and supports memory function in the face of neurodegeneration. We hypothesized that higher LFCconnectivity is associated with enhanced efficiency in connected major networks involved in episodic memory. We further hypothesized that higher LFC-related network efficiency predicts higher memory abilities. Methods: We assessed fMRI during a face-name association learning task in 26 healthy cognitively normal elderly participants. Using beta-series correlation analysis, we computed task-related LFC-connectivity to key memory networks including the default-mode network (DMN) and dorsal attention network (DAN). Network efficiency within the DMN and DAN was estimated by the graph theoretical small-worldness statistic. We applied linear regression analyses in order to test the association between LFC-connectivity to the DMN/DAN and small-worldness of these networks. Mediation analysis was applied to test LFC-connectivity to the DMN and DAN as a mediator of the association between education and higher DMN and DAN smallworldness. Lastly, we tested network small-worldness as a predictor of memory performance. Results: We found that higher LFC-connectivity to the DMN and DAN during successful memory encoding and recognition was associated with higher small-worldness of those networks. Higher task-related LFC-connectivity mediated the association between education and higher small-worldness in the DMN and DAN. Further, higher small-worldness of these networks predicted better performance in the memory task. Conclusions: The current results suggest that higher education-related LFC-connectivity to key memory networks during a memory task is associated with higher network efficiency and thus enhanced reserve of memory abilities in aging

    Fronto-striatal alterations correlate with apathy severity in behavioral variant frontotemporal dementia

    Get PDF
    Structural and functional changes in cortical and subcortical regions have been reported in behavioral variant frontotemporal dementia (bvFTD), however, a multimodal approach may provide deeper insights into the neural correlates of neuropsychiatric symptoms. In this multicenter study, we measured cortical thickness (CTh) and subcortical volumes to identify structural abnormalities in 37 bvFTD patients, and 37 age- and sex-matched healthy controls. For seed regions with significant structural changes, whole-brain functional connectivity (FC) was examined in a sub-cohort of N = 22 bvFTD and N = 22 matched control subjects to detect complementary alterations in brain network organization. To explore the functional significance of the observed structural and functional deviations, correlations with clinical and neuropsychological outcomes were tested where available. Significantly decreased CTh was observed in the bvFTD group in caudal middle frontal gyrus, left pars opercularis, bilateral superior frontal and bilateral middle temporal gyrus along with subcortical volume reductions in bilateral basal ganglia, thalamus, hippocampus, and amygdala. Resting-state functional magnetic resonance imaging showed decreased FC in bvFTD between: dorsal striatum and left caudal middle frontal gyrus; putamen and fronto-parietal regions; pallidum and cerebellum. Conversely, bvFTD showed increased FC between: left middle temporal gyrus and paracingulate gyrus; caudate nucleus and insula; amygdala and parahippocampal gyrus. Additionally, cortical thickness in caudal, lateral and superior frontal regions as well as caudate nucleus volume correlated negatively with apathy severity scores of the Neuropsychiatry Inventory Questionnaire. In conclusion, multimodal structural and functional imaging indicates that fronto-striatal regions have a considerable influence on the severity of apathy in bvFTD

    Fronto-striatal alterations correlate with apathy severity in behavioral variant frontotemporal dementia

    Get PDF
    Structural and functional changes in cortical and subcortical regions have been reported in behavioral variant frontotemporal dementia (bvFTD), however, a multimodal approach may provide deeper insights into the neural correlates of neuropsychiatric symptoms. In this multicenter study, we measured cortical thickness (CTh) and subcortical volumes to identify structural abnormalities in 37 bvFTD patients, and 37 age- and sex-matched healthy controls. For seed regions with significant structural changes, whole-brain functional connectivity (FC) was examined in a sub-cohort of N = 22 bvFTD and N = 22 matched control subjects to detect complementary alterations in brain network organization. To explore the functional significance of the observed structural and functional deviations, correlations with clinical and neuropsychological outcomes were tested where available. Significantly decreased CTh was observed in the bvFTD group in caudal middle frontal gyrus, left pars opercularis, bilateral superior frontal and bilateral middle temporal gyrus along with subcortical volume reductions in bilateral basal ganglia, thalamus, hippocampus, and amygdala. Resting-state functional magnetic resonance imaging showed decreased FC in bvFTD between: dorsal striatum and left caudal middle frontal gyrus;putamen and fronto-parietal regions;pallidum and cerebellum. Conversely, bvFTD showed increased FC between: left middle temporal gyrus and paracingulate gyrus;caudate nucleus and insula;amygdala and parahippocampal gyrus. Additionally, cortical thickness in caudal, lateral and superior frontal regions as well as caudate nucleus volume correlated negatively with apathy severity scores of the Neuropsychiatry Inventory Questionnaire. In conclusion, multimodal structural and functional imaging indicates that fronto-striatal regions have a considerable influence on the severity of apathy in bvFTD

    Associations between sex, body mass index and the individual microglial response in Alzheimer's disease

    Get PDF
    Background and objectives18-kDa translocator protein position-emission-tomography (TSPO-PET) imaging emerged for in vivo assessment of neuroinflammation in Alzheimer's disease (AD) research. Sex and obesity effects on TSPO-PET binding have been reported for cognitively normal humans (CN), but such effects have not yet been systematically evaluated in patients with AD. Thus, we aimed to investigate the impact of sex and obesity on the relationship between beta-amyloid-accumulation and microglial activation in AD.Methods49 patients with AD (29 females, all A beta-positive) and 15 A beta-negative CN (8 female) underwent TSPO-PET ([18F]GE-180) and beta-amyloid-PET ([18F]flutemetamol) imaging. In 24 patients with AD (14 females), tau-PET ([18F]PI-2620) was additionally available. The brain was parcellated into 218 cortical regions and standardized-uptake-value-ratios (SUVr, cerebellar reference) were calculated. Per region and tracer, the regional increase of PET SUVr (z-score) was calculated for AD against CN. The regression derived linear effect of regional A beta-PET on TSPO-PET was used to determine the A beta-plaque-dependent microglial response (slope) and the A beta-plaque-independent microglial response (intercept) at the individual patient level. All read-outs were compared between sexes and tested for a moderation effect of sex on associations with body mass index (BMI).ResultsIn AD, females showed higher mean cortical TSPO-PET z-scores (0.91 +/- 0.49;males 0.30 +/- 0.75;p = 0.002), while A beta-PET z-scores were similar. The A beta-plaque-independent microglial response was stronger in females with AD (+ 0.37 +/- 0.38;males with AD - 0.33 +/- 0.87;p = 0.006), pronounced at the prodromal stage. On the contrary, the A beta-plaque-dependent microglial response was not different between sexes. The A beta-plaque-independent microglial response was significantly associated with tau-PET in females (Braak-II regions: r = 0.757, p = 0.003), but not in males. BMI and the A beta-plaque-independent microglial response were significantly associated in females (r = 0.44, p = 0.018) but not in males (BMI*sex interaction: F(3,52) = 3.077, p = 0.005).ConclusionWhile microglia response to fibrillar A beta is similar between sexes, women with AD show a stronger A beta-plaque-independent microglia response. This sex difference in A beta-independent microglial activation may be associated with tau accumulation. BMI is positively associated with the A beta-plaque-independent microglia response in females with AD but not in males, indicating that sex and obesity need to be considered when studying neuroinflammation in AD

    Microglial activation and connectivity in Alzheimer disease and aging

    Get PDF
    OBJECTIVE Alzheimer disease (AD) is characterized by amyloid β (Aβ) plaques and neurofibrillary tau tangles, but increasing evidence suggests that neuroinflammation also plays a key role, driven by the activation of microglia. Aβ and tau pathology appear to spread along pathways of highly connected brain regions, but it remains elusive whether microglial activation follows a similar distribution pattern. Here, we assess whether connectivity is associated with microglia activation patterns. METHODS We included 32 Aβ-positive early AD subjects (18 women, 14 men) and 18 Aβ-negative age-matched healthy controls (10 women, 8 men) from the prospective ActiGliA (Activity of Cerebral Networks, Amyloid and Microglia in Aging and Alzheimer's Disease) study. All participants underwent microglial activation positron emission tomography (PET) with the third-generation mitochondrial 18 kDa translocator protein (TSPO) ligand [18 F]GE-180 and magnetic resonance imaging (MRI) to measure resting-state functional and structural connectivity. RESULTS We found that inter-regional covariance in TSPO-PET and standardized uptake value ratio was preferentially distributed along functionally highly connected brain regions, with MRI structural connectivity showing a weaker association with microglial activation. AD patients showed increased TSPO-PET tracer uptake bilaterally in the anterior medial temporal lobe compared to controls, and higher TSPO-PET uptake was associated with cognitive impairment and dementia severity in a disease stage-dependent manner. INTERPRETATION Microglial activation distributes preferentially along highly connected brain regions, similar to tau pathology. These findings support the important role of microglia in neurodegeneration, and we speculate that pathology spreads throughout the brain along vulnerable connectivity pathways. ANN NEUROL 2022

    Simvastatin add-on to escitalopram in patients with comorbid obesity and major depression (SIMCODE): study protocol of a multicentre, randomised, double-blind, placebo-controlled trial

    Get PDF
    Introduction: Major depressive disorder (MDD) and obesity are both common disorders associated with significant burden of disease worldwide. Importantly, MDD and obesity often co-occur, with each disorder increasing the risk for developing the other by about 50%-60%. Statins are among the most prescribed medications with well-established safety and efficacy. Statins are recommended in primary prevention of cardiovascular disease, which has been linked to both MDD and obesity. Moreover, statins are promising candidates to treat MDD because a meta-analysis of pilot randomised controlled trials has found antidepressive effects of statins as adjunct therapy to antidepressants. However, no study so far has tested the antidepressive potential of statins in patients with MDD and comorbid obesity. Importantly, this is a difficult-to-treat population that often exhibits a chronic course of MDD and is more likely to be treatment resistant. Thus, in this confirmatory randomised controlled trial, we will determine whether add-on simvastatin to standard antidepressant medication with escitalopram is more efficacious than add-on placebo over 12 weeks in 160 patients with MDD and comorbid obesity. Methods and analysis: This is a protocol for a randomised, placebo-controlled, double-blind multicentre trial with parallel-group design (phase II). One hundred and sixty patients with MDD and comorbid obesity will be randomised 1:1 to simvastatin or placebo as add-on to standard antidepressant medication with escitalopram. The primary outcome is change in the Montgomery-angstrom sberg Depression Rating Scale (MADRS) score from baseline to week 12. Secondary outcomes include MADRS response (defined as 50% MADRS score reduction from baseline), MADRS remission (defined as MADRS score <10), mean change in patients' self-reported Beck Depression Inventory (BDI-II) and mean change in high-density lipoprotein, low-density lipoprotein and total cholesterol from baseline to week 12. Ethics and dissemination: This protocol has been approved by the ethics committee of the federal state of Berlin (Ethik-Kommission des Landes Berlin, reference: 19/0226-EK 11) and by the relevant federal authority (Bundesinstitut fur Arzneimittel und Medizinprodukte (BfArM), reference: 4043387). Study findings will be published in peer-reviewed journals and will be presented at (inter)national conferences

    Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies

    Get PDF
    & beta;-amyloid (A & beta;) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, A & beta;-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of A & beta;(A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional A & beta;(AD: & beta;(T) = 0.412 & PLUSMN;0.196 vs. & beta;(A) = 0.142 & PLUSMN;0.123, p < 0.001;AD-CBS: & beta;(T) = 0.385 & PLUSMN;0.176 vs. & beta;(A) = 0.131 & PLUSMN;0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (& beta;(T) = 0.418 & PLUSMN;0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and A & beta;related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases
    corecore