4,427 research outputs found
Recommended from our members
Test-retest reliability of time-frequency measures of auditory steady-state responses in patients with schizophrenia and healthy controls.
BackgroundAuditory steady-state response (ASSR) paradigms have consistently demonstrated gamma band abnormalities in schizophrenia at a 40-Hz driving frequency with both electroencephalography (EEG) and magnetoencephalography (MEG). Various time-frequency measures have been used to assess the 40-Hz ASSR, including evoked power, single trial total power, phase-locking factor (PLF), and phase-locking angle (PLA). While both EEG and MEG studies have shown power and PLF ASSR measures to exhibit excellent test-retest reliability in healthy adults, the reliability of these measures in patients with schizophrenia has not been determined.MethodsASSRs were obtained by recording EEG data during presentation of repeated 20-Hz, 30-Hz and 40-Hz auditory click trains from nine schizophrenia patients (SZ) and nine healthy controls (HC) tested on two occasions. Similar ASSR data were collected from a separate group of 30 HC on two to three test occasions. A subset of these HC subjects had EEG recordings during two tasks, passively listening and actively attending to click train stimuli. Evoked power, total power, PLF, and PLA were calculated following Morlet wavelet time-frequency decomposition of EEG data and test-retest generalizability (G) coefficients were calculated for each ASSR condition, time-frequency measure, and subject group.ResultsG-coefficients ranged from good to excellent (> 0.6) for most 40-Hz time-frequency measures and participant groups, whereas 20-Hz G-coefficients were much more variable. Importantly, test-retest reliability was excellent for the various 40-Hz ASSR measures in SZ, similar to reliabilities in HC. Active attention to click train stimuli modestly reduced G-coefficients in HC relative to the passive listening condition.DiscussionThe excellent test-retest reliability of 40-Hz ASSR measures replicates previous EEG and MEG studies. PLA, a relatively new time-frequency measure, was shown for the first time to have excellent reliability, comparable to power and PLF measures. Excellent reliability of 40 Hz ASSR measures in SZ supports their use in clinical trials and longitudinal observational studies
Recommended from our members
Aberrant activity in conceptual networks underlies N400 deficits and unusual thoughts in schizophrenia.
BackgroundThe N400 event-related potential (ERP) is triggered by meaningful stimuli that are incongruous, or unmatched, with their semantic context. Functional magnetic resonance imaging (fMRI) studies have identified brain regions activated by semantic incongruity, but their precise links to the N400 ERP are unclear. In schizophrenia (SZ), N400 amplitude reduction is thought to reflect overly broad associations in semantic networks, but the abnormalities in brain networks underlying deficient N400 remain unknown. We utilized joint independent component analysis (JICA) to link temporal patterns in ERPs to neuroanatomical patterns from fMRI and investigate relationships between N400 amplitude and neuroanatomical activation in SZ patients and healthy controls (HC).MethodsSZ patients (n = 24) and HC participants (n = 25) performed a picture-word matching task, in which words were either matched (APPLE→apple) by preceding pictures, or were unmatched by semantically related (in-category; IC, APPLE→lemon) or unrelated (out of category; OC, APPLE→cow) pictures, in separate ERP and fMRI sessions. A JICA "data fusion" analysis was conducted to identify the fMRI brain regions specifically associated with the ERP N400 component. SZ and HC loading weights were compared and correlations with clinical symptoms were assessed.ResultsJICA identified an ERP-fMRI "fused" component that captured the N400, with loading weights that were reduced in SZ. The JICA map for the IC condition showed peaks of activation in the cingulate, precuneus, bilateral temporal poles and cerebellum, whereas the JICA map from the OC condition was linked primarily to visual cortical activation and the left temporal pole. Among SZ patients, fMRI activity from the IC condition was inversely correlated with unusual thought content.ConclusionsThe neural networks associated with the N400 ERP response to semantic violations depends on conceptual relatedness. These findings are consistent with a distributed network underlying neural responses to semantic incongruity including unimodal visual areas as well as integrative, transmodal areas. Unusual thoughts in SZ may reflect impaired processing in transmodal hub regions such as the precuneus, leading to overly broad semantic associations
Inbound freight consolidation : a simulation model to evaluate consolidation rules
Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2006."June 2006."Includes bibliographical references (leaf 51).In logistics, freight can be consolidated over time (temporally) or over space (spatially). This thesis presents a simulation model to evaluate temporal and spatial consolidation rules. The model is the result of a research project to analyze freight consolidation options for a large industrial company. The research project focused on the company's freight imported from China to the US, and the model presented in the thesis is structured to represent a typical import logistics network. The results section of the thesis presents a method for evaluating consolidation rules. The results recommend temporal consolidation of two weeks at the origin port and temporal consolidation of less than one week at the factory for the company's shipments from China to the US. This consolidation policy offers total network cost savings of 24% over the base case, an immediate ship policy.by Daniel J. Ford, Jr.M.Eng.in Logistic
Vibration Spectra of the -Tree Fractal
We introduce a family of post-critically finite fractal trees indexed by the
number of branches they possess. Then we produce a Laplacian operator on graph
approximations to these fractals and use spectral decimation to describe the
spectrum of the Laplacian on these trees. Lastly we consider the behavior of
the spectrum as the number of branches increases.Comment: 21 pages, 4 figure
Efficient choice of coloured noises in stochastic dynamics of open quantum systems
The Stochastic Liouville-von Neumann (SLN) equation describes the dynamics of
an open quantum system reduced density matrix coupled to a non-Markovian
harmonic environment. The interaction with the environment is represented by
complex coloured noises which drive the system, and whose correlation functions
are set by the properties of the environment. We present a number of schemes
capable of generating coloured noises of this kind that are built on a noise
amplitude reduction procedure [Imai et al, Chem. Phys. 446, 134 (2015)],
including two analytically optimised schemes. In doing so, we pay close
attention to the properties of the correlation functions in Fourier space,
which we derive in full. For some schemes the method of Wiener filtering for
deconvolutions leads to the realisation that weakening causality in one of the
noise correlation functions improves numerical convergence considerably,
allowing us to introduce a well controlled method for doing so. We compare the
ability of these schemes, along with an alternative optimised scheme [Schmitz
and Stockburger, Eur. Phys. J.: Spec. Top. 227, 1929 (2019)], to reduce the
growth in the mean and variance of the trace of the reduced density matrix, and
their ability to extend the region in which the dynamics is stable and well
converged for a range of temperatures. By numerically optimising an additional
noise scaling freedom, we identify the scheme which performs best for the
parameters used, improving convergence by orders of magnitude and increasing
the time accessible by simulation.Comment: 23 pages, 7 figure
Role of N-methyl-D-aspartate receptors in action-based predictive coding deficits in schizophrenia
Published in final edited form as:Biol Psychiatry. 2017 March 15; 81(6): 514–524. doi:10.1016/j.biopsych.2016.06.019.BACKGROUND: Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia.
METHODS: In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared.
RESULTS: N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen’s d = 1.14) and schizophrenia (Cohen’s d = .85).
CONCLUSIONS: Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia.This work was supported by AstraZeneca for an investigator-initiated study (DHM) and the National Institute of Mental Health Grant Nos. R01 MH-58262 (to JMF) and T32 MH089920 (to NSK). JHK was supported by the Yale Center for Clinical Investigation Grant No. UL1RR024139 and the US National Institute on Alcohol Abuse and Alcoholism Grant No. P50AA012879. (AstraZeneca for an investigator-initiated study (DHM); R01 MH-58262 - National Institute of Mental Health; T32 MH089920 - National Institute of Mental Health; UL1RR024139 - Yale Center for Clinical Investigation; P50AA012879 - US National Institute on Alcohol Abuse and Alcoholism)Accepted manuscrip
A new physical interpretation of optical and infrared variability in quasars
Changing-look quasars are a recently identified class of active galaxies in
which the strong UV continuum and/or broad optical hydrogen emission lines
associated with unobscured quasars either appear or disappear on timescales of
months to years. The physical processes responsible for this behaviour are
still debated, but changes in the black hole accretion rate or accretion disk
structure appear more likely than changes in obscuration. Here we report on
four epochs of spectroscopy of SDSS J110057.70-005304.5, a quasar at a redshift
of whose UV continuum and broad hydrogen emission lines have faded,
and then returned over the past 20 years. The change in this quasar
was initially identified in the infrared, and an archival spectrum from 2010
shows an intermediate phase of the transition during which the flux below
rest-frame 3400\AA\ has decreased by close to an order of magnitude.
This combination is unique compared to previously published examples of
changing-look quasars, and is best explained by dramatic changes in the
innermost regions of the accretion disk. The optical continuum has been rising
since mid-2016, leading to a prediction of a rise in hydrogen emission line
flux in the next year. Increases in the infrared flux are beginning to follow,
delayed by a 3 year observed timescale. If our model is confirmed, the
physics of changing-look quasars are governed by processes at the innermost
stable circular orbit (ISCO) around the black hole, and the structure of the
innermost disk. The easily identifiable and monitored changing-look quasars
would then provide a new probe and laboratory of the nuclear central engine.Comment: 13 pages, 4 figures, 3 tables. Published in MNRAS. All code and data
links on GitHub, https://github.com/d80b2t/WISE_L
GHOSTS I: A New Faint very Isolated Dwarf Galaxy at D = 12 +/- 2 Mpc
We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS
data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick
disk, and Star clusters) fields. Its detected individual stars populate an
approximately one magnitude range of its luminosity function (LF). Using
synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we
find that the colors and magnitudes of GHOSTS I's individual stars are most
consistent with being young helium-burning and asymptotic giant branch stars at
a distance of 12 +/- 2 Mpc. Morphologically, GHOSTS I appears to be actively
forming stars, so we tentatively classify it as a dwarf irregular (dIrr)
galaxy, although future HST observations deep enough to resolve a larger
magnitude range in its LF are required to make a more secure classification.
GHOSTS I's absolute magnitude is , making it one
of the least luminous dIrr galaxies known, and its metallicity is lower than
[Fe/H] =-1.5 dex. The half-light radius of GHOSTS I is 226 +/- 38 pc and its
ellipticity is 0.47 +/- 0.07, similar to Milky Way and M31 dwarf satellites at
comparable luminosity. There are no luminous massive galaxies or galaxy
clusters within ~ 4 Mpc from GHOSTS I that could be considered as its host,
making it a very isolated dwarf galaxy in the Local Universe.Comment: 8 pages, 7 figures. Accepted for publication in Ap
- …