4,116 research outputs found

    Inbound freight consolidation : a simulation model to evaluate consolidation rules

    Get PDF
    Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2006."June 2006."Includes bibliographical references (leaf 51).In logistics, freight can be consolidated over time (temporally) or over space (spatially). This thesis presents a simulation model to evaluate temporal and spatial consolidation rules. The model is the result of a research project to analyze freight consolidation options for a large industrial company. The research project focused on the company's freight imported from China to the US, and the model presented in the thesis is structured to represent a typical import logistics network. The results section of the thesis presents a method for evaluating consolidation rules. The results recommend temporal consolidation of two weeks at the origin port and temporal consolidation of less than one week at the factory for the company's shipments from China to the US. This consolidation policy offers total network cost savings of 24% over the base case, an immediate ship policy.by Daniel J. Ford, Jr.M.Eng.in Logistic

    Vibration Spectra of the mm-Tree Fractal

    Full text link
    We introduce a family of post-critically finite fractal trees indexed by the number of branches they possess. Then we produce a Laplacian operator on graph approximations to these fractals and use spectral decimation to describe the spectrum of the Laplacian on these trees. Lastly we consider the behavior of the spectrum as the number of branches increases.Comment: 21 pages, 4 figure

    Efficient choice of coloured noises in stochastic dynamics of open quantum systems

    Get PDF
    The Stochastic Liouville-von Neumann (SLN) equation describes the dynamics of an open quantum system reduced density matrix coupled to a non-Markovian harmonic environment. The interaction with the environment is represented by complex coloured noises which drive the system, and whose correlation functions are set by the properties of the environment. We present a number of schemes capable of generating coloured noises of this kind that are built on a noise amplitude reduction procedure [Imai et al, Chem. Phys. 446, 134 (2015)], including two analytically optimised schemes. In doing so, we pay close attention to the properties of the correlation functions in Fourier space, which we derive in full. For some schemes the method of Wiener filtering for deconvolutions leads to the realisation that weakening causality in one of the noise correlation functions improves numerical convergence considerably, allowing us to introduce a well controlled method for doing so. We compare the ability of these schemes, along with an alternative optimised scheme [Schmitz and Stockburger, Eur. Phys. J.: Spec. Top. 227, 1929 (2019)], to reduce the growth in the mean and variance of the trace of the reduced density matrix, and their ability to extend the region in which the dynamics is stable and well converged for a range of temperatures. By numerically optimising an additional noise scaling freedom, we identify the scheme which performs best for the parameters used, improving convergence by orders of magnitude and increasing the time accessible by simulation.Comment: 23 pages, 7 figure

    Role of N-methyl-D-aspartate receptors in action-based predictive coding deficits in schizophrenia

    Full text link
    Published in final edited form as:Biol Psychiatry. 2017 March 15; 81(6): 514–524. doi:10.1016/j.biopsych.2016.06.019.BACKGROUND: Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. METHODS: In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. RESULTS: N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen’s d = 1.14) and schizophrenia (Cohen’s d = .85). CONCLUSIONS: Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia.This work was supported by AstraZeneca for an investigator-initiated study (DHM) and the National Institute of Mental Health Grant Nos. R01 MH-58262 (to JMF) and T32 MH089920 (to NSK). JHK was supported by the Yale Center for Clinical Investigation Grant No. UL1RR024139 and the US National Institute on Alcohol Abuse and Alcoholism Grant No. P50AA012879. (AstraZeneca for an investigator-initiated study (DHM); R01 MH-58262 - National Institute of Mental Health; T32 MH089920 - National Institute of Mental Health; UL1RR024139 - Yale Center for Clinical Investigation; P50AA012879 - US National Institute on Alcohol Abuse and Alcoholism)Accepted manuscrip

    A new physical interpretation of optical and infrared variability in quasars

    Get PDF
    Changing-look quasars are a recently identified class of active galaxies in which the strong UV continuum and/or broad optical hydrogen emission lines associated with unobscured quasars either appear or disappear on timescales of months to years. The physical processes responsible for this behaviour are still debated, but changes in the black hole accretion rate or accretion disk structure appear more likely than changes in obscuration. Here we report on four epochs of spectroscopy of SDSS J110057.70-005304.5, a quasar at a redshift of z=0.378z=0.378 whose UV continuum and broad hydrogen emission lines have faded, and then returned over the past ≈\approx20 years. The change in this quasar was initially identified in the infrared, and an archival spectrum from 2010 shows an intermediate phase of the transition during which the flux below rest-frame ≈\approx3400\AA\ has decreased by close to an order of magnitude. This combination is unique compared to previously published examples of changing-look quasars, and is best explained by dramatic changes in the innermost regions of the accretion disk. The optical continuum has been rising since mid-2016, leading to a prediction of a rise in hydrogen emission line flux in the next year. Increases in the infrared flux are beginning to follow, delayed by a ∼\sim3 year observed timescale. If our model is confirmed, the physics of changing-look quasars are governed by processes at the innermost stable circular orbit (ISCO) around the black hole, and the structure of the innermost disk. The easily identifiable and monitored changing-look quasars would then provide a new probe and laboratory of the nuclear central engine.Comment: 13 pages, 4 figures, 3 tables. Published in MNRAS. All code and data links on GitHub, https://github.com/d80b2t/WISE_L

    GHOSTS I: A New Faint very Isolated Dwarf Galaxy at D = 12 +/- 2 Mpc

    Full text link
    We report the discovery of a new faint dwarf galaxy, GHOSTS I, using HST/ACS data from one of our GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disk, and Star clusters) fields. Its detected individual stars populate an approximately one magnitude range of its luminosity function (LF). Using synthetic color-magnitude diagrams (CMDs) to compare with the galaxy's CMD, we find that the colors and magnitudes of GHOSTS I's individual stars are most consistent with being young helium-burning and asymptotic giant branch stars at a distance of 12 +/- 2 Mpc. Morphologically, GHOSTS I appears to be actively forming stars, so we tentatively classify it as a dwarf irregular (dIrr) galaxy, although future HST observations deep enough to resolve a larger magnitude range in its LF are required to make a more secure classification. GHOSTS I's absolute magnitude is MV=−9.85−0.33+0.40M_V = -9.85^{+ 0.40}_{- 0.33}, making it one of the least luminous dIrr galaxies known, and its metallicity is lower than [Fe/H] =-1.5 dex. The half-light radius of GHOSTS I is 226 +/- 38 pc and its ellipticity is 0.47 +/- 0.07, similar to Milky Way and M31 dwarf satellites at comparable luminosity. There are no luminous massive galaxies or galaxy clusters within ~ 4 Mpc from GHOSTS I that could be considered as its host, making it a very isolated dwarf galaxy in the Local Universe.Comment: 8 pages, 7 figures. Accepted for publication in Ap
    • …
    corecore