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Efficient choice of colored noise in the stochastic dynamics of open quantum systems
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The stochastic Liouville–von Neumann (SLN) equation describes the dynamics of an open quantum system
reduced density matrix coupled to a non-Markovian harmonic environment. The interaction with the environment
is represented by complex colored noises which drive the system, and whose correlation functions are set by the
properties of the environment. We present a number of schemes capable of generating colored noises of this kind
that are built on a noise amplitude reduction procedure [Imai et al., Chem. Phys. 446, 134 (2015)], including two
analytically optimized schemes. In doing so, we pay close attention to the properties of the correlation functions
in Fourier space, which we derive in full. For some schemes the method of Wiener filtering for deconvolutions
leads to the realization that weakening causality in one of the noise correlation functions improves numerical
convergence considerably, allowing us to introduce a well-controlled method for doing so. We compare the
ability of these schemes, along with an alternative optimized scheme [Schmitz and Stockburger, Eur. Phys. J.:
Spec. Top. 227, 1929 (2019)], to reduce the growth in the mean and variance of the trace of the reduced density
matrix, and their ability to extend the region in which the dynamics is stable and well converged for a range
of temperatures. By numerically optimizing an additional noise scaling freedom, we identify the scheme which
performs best for the parameters used, improving convergence by orders of magnitude and increasing the time
accessible by simulation.
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I. INTRODUCTION

In open quantum systems, interactions between the system
of interest and its environment drive behaviors such as dissipa-
tion and decoherence which are not found in isolation. These
play a strong role in quantum computing [1] where the ability
of the open system to stay in a superposition of states is desir-
able and also in quantum thermodynamics [2]. Unfortunately,
the very large number of environmental degrees of freedom
makes the treatment of both the system and environment ana-
lytically and numerically challenging, especially when there is
strong coupling between them. For this reason, existing meth-
ods tend to begin by taking the partial trace of the full density
matrix over the environment variables to obtain the reduced
density matrix of the system of interest. In particular, this is
done in the well-known Feynman-Vernon influence functional
formalism where the response of a bath coupled linearly to
the open system is expressed as a path integral over an infi-
nite number of displaced harmonic oscillators [3]. Techniques
which build on this method include hierarchical equations
of motion (HEOM) [4–6], hybrid stochastic HEOM [7,8],
hierarchy of pure states [9], stochastic Schrödinger equations
[10], quasiadiabatic path integrals [11], stochastic Liouville–
von Neumann equations (SLNs) [12–15], and the extended
SLN (ESLN) equations method, which accounts for initial
thermalization by the inclusion of an additional stochastic
differential equation (SDE) in imaginary time with imagi-
nary time noises [16–18]. Importantly, none of these methods
make the Markov assumption, where the environment cor-
relation times are taken to be negligibly short compared

to the characteristic timescales of the open system. The
Markov assumption has the physical interpretation that any
information dissipated from the system to the environment
will never be returned, i.e., the system-environment coupling
is memoryless. Instead, the environment is allowed to be
fully non-Markovian, introducing a source of memory to the
system.

The SLN and ESLN methods, amongst others, are
based on solving SDEs with complex correlated (colored)
Gaussian noises. Beginning with the seminal work of Grabert,
Schramm, and Ingold [19], these methods evolve stochastic
reduced density matrices via SDEs, driven by the afore-
mentioned noises, with the physical density matrix being
recovered by stochastic averaging over all realizations of these
noises. The advantage of these methods is that they are exact
and nonperturbative and are in principle applicable to any
temperature, system-environment coupling strength, and any
form of the spectral density. In addition, with the recent de-
velopment of the ESLN, the system and its environment can
be thermalized via the application of an initial evolution in
imaginary time, rather than being initialized in a partitioned
state [12–15]. The current work focuses on the properties of
the noises and their generation rather than on thermalization
or the properties of specific physical dynamics, so we shall
limit ourselves to the SLN rather than the ESLN for simplicity.
It is important to note that these methods do not constitute
an ad hoc representation of the system behavior where the
noises might have been introduced artificially to model the
environment. Instead, they have been derived rigorously from
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an appropriate consideration of the whole system, consisting
of both the open system and its environment, by means of
elimination of the environment using the path-integral method
and a Hubbard-Stratonovich transformation.

To simulate these SDEs, particular care must be taken
when generating the complex colored noises, as the choice
of a generation scheme can significantly alter the statistical
properties of the noises and thus the system dynamics. A
poor choice is characterized by a catastrophic loss of trace
preservation for the reduced density matrix, which requires
an exponentially large sample for convergence of the average.
Making this choice is not trivial since the correlation functions
must be satisfied with sensible decisions being made wherever
there is freedom to do so, especially for stronger coupling
when the magnitude of the noises is already large. In fact, one
of the main conclusions of this work is that generating noises
which satisfy the desired correlation functions is not enough to
guarantee convergence or that the results be physical, despite
the correlation functions being the only formal requirements
of the theory on the noises.

In our previous work [18], one particular noise generation
scheme was used which produced well-converged results as a
verification of the ESLN method, but here we generalize our
procedure and explore a number of possible noise generation
schemes which all create the desired correlation functions
but produce results of different convergence for the open
system dynamics. We also optimize the scheme to minimize
the (erroneous) exponential growth of the trace, something
which has only recently been studied in any detail [18,20,21],
though with some inconsistencies in [20] which we correct,
and compare our optimized scheme with a recently proposed
alternative, obtained independently via a different method and
optimized subject to different constraints [21]. By examining
the properties of the Fourier transforms of the desired correla-
tions, the properties of the different noises, and their effect
on the system dynamics, we arrive at a number of conclu-
sions about noise generation for SLN methods, where and
why issues arise, and how to maximize the possible duration
(run time) of simulations before the stochastic nature of the
dynamics inevitably leads to numerical blow up and statistical
uncertainty.

For this purpose, we will use the spin-boson model as it is a
relatively simple model consisting of a two-level spin system
surrounded by bosonic degrees of freedom that describe the
environment. This can naturally be applied to qubits coupled
to an environment [22–26], electronic energy transfer in bio-
logical systems [20], Josephson junctions [27–29], cold atoms
[30,31], and solid-state artificial atoms [32]. The spin-boson
model has already been considered previously by us in the
context of the ESLN [18].

Comparison with other methods mentioned in the Intro-
duction is not within the scope of this paper, as it will be
focusing only on the details of the noise generation within
the SLN equation formalism. So, the purpose of the present
paper is fourfold: (1) develop a general scheme for noise
generation for the SLN equation and propose a number
of possible choices for the scheme, including a fully opti-
mized choice, (2) demonstrate that these choices significantly
alter the properties of the noises with appropriate use of

deconvolution methods [33,34] where necessary, (3) exam-
ine in detail how different choices affect the convergence
properties of the results and the accessible run time of sim-
ulation before blow up, comparing with other optimization
schemes where possible [20,21], and (4) explain in detail
why particular choices fail, referring to the properties of the
correlation functions themselves where necessary. More con-
cretely, in Sec. II we briefly review the SLN formalism and the
spin-boson model, before introducing in Sec. III our specific
framework for noise generation and the possible choices we
have identified. Finally in Sec. IV we present the results of
the various noise generation schemes.

II. THEORY

A. Stochastic Liouville–von Neumann equations

Following the influence functional formalism of Feynman
and Vernon [3], we consider the standard setup of an open
quantum system with coordinates q and Hamiltonian Hq (that
may describe either an electronic or bosonic subsystem, or
both) coupled to an environmental heat bath of harmonic
oscillators i with masses mi, governed by a potential energy
that is quadratic in the oscillator displacement coordinates ξi.
The coupling between the open system and its environment
is linear in the environment coordinates but fully general
in q, taking the form −ξi fi(q) for the given coordinate ξi,
with the fi(q) being arbitrary functions of q. The full system
Hamiltonian is thus

Htot(q, {ξi}, t ) = Hq(q, t ) +
∑

i

p2
i

2mi
+ 1

2

∑
i j

�i jξiξ j

−
∑

i

ξi fi(q), (1)

where pi are momentum coordinates canonical to ξi, and �i j

is the force constant matrix of the bath. This is a more general
form of the Caldeira-Leggett Hamiltonian [35] since the envi-
ronment coupling is a general function of q rather than being
strictly bilinear.

In the SLN method the open system and environment den-
sity matrices are initialized in a partitioned state where the full
density matrix ρ0 = ρtot(t0) is the tensor product of the open
system density matrix ρq(t0) and that of its environment ρξ (t0)
at some initial time t0,

ρ0 = ρq(t0) ⊗ ρξ (t0). (2)

In principle, the open system and its environment can be
initialized in the canonical equilibrium state using the ESLN
formalism [16,18], with the system and environment in ther-
mal contact such that they are fully thermalized. However,
here we shall limit ourselves to the partitioned initial state (2)
and the SLN method.

Tracing over the environment variables [15,19], it is pos-
sible to obtain the stochastic Liouville–von Neumann (SLN)
equation, an SDE which describes the evolution of a stochastic
reduced density matrix for the system driven by complex
colored noises, where the physical reduced density matrix
is obtained by taking the average over a sample of many
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realizations of the dynamics. This SLN takes the form

ih̄
dρ(t )

dt
= [Hq(t ), ρ(t )] − η(t )[ f (q), ρ(t )]

− h̄

2
ν(t ){ f (q), ρ(t )}, (3)

where ρ(t ) represents the stochastic reduced density matrix
and the square (curly) brackets represent standard (anti-)
commutators, with the physical reduced density matrix given
by ρph(t ) = 〈ρ(t )〉. Here η(t ) and ν(t ) are the aforemen-
tioned complex colored noises, angle brackets 〈·〉 represent
an average over the noises, Hq(t ) is the open system Hamilto-
nian mentioned previously (which may depend explicitly on
time), and f (q) is the (universal) function which couples the
system to the environmental oscillators, assumed to be time
independent.

The noises all have zero mean and are otherwise defined
by their correlation functions

〈η(t )η(t ′)〉 = h̄
ˆ ∞

0

dω

π
J (ω) coth

(
1

2
β h̄ω

)
cos (ω(t − t ′))

≡ Kηη(t − t ′), (4)

〈η(t )ν(t ′)〉 = − 2i	(t − t ′)
ˆ ∞

0

dω

π
J (ω) sin [ω(t − t ′)]

≡ Kην (t − t ′) = iR(t − t ′), (5)

〈ν(t )ν(t ′)〉 = 0, ∀t, t ′, (6)

where J (ω) is the spectral density of the environment and β =
1/kBT where T is the temperature of the environment. From
now on we set h̄ = 1. In this study we take J (ω) to be of the
Drude form

J (ω) = ω
[
1 +

( ω

ωc

)2]−2

, (7)

where the cutoff frequency ωc controls the decaying charac-
ter of J (ω) at large ω, and there is a hard cutoff such that
J (ω > ωc) = 0. To be explicit, the Drude form of the spectral
density is used prior to a hard cutoff ωc that specifies the
maximum phonon frequency of the bath above which there
is no contribution associated with higher frequencies.

B. Spin-boson model

Thus far, the system Hamiltonian Hq has been kept fully
general, as has the form of the system-environment coupling,
f (q). We will adopt the spin-boson Hamiltonian for our sys-
tem of interest, which, in a basis of a generic two-state system,
is

Hq(t ) = 1
2
(t )σx + 1

2ε(t )σz = 1
2
(t )(|0〉〈1| + |1〉〈0|)

+ 1
2ε(t )(|0〉〈0| − |1〉〈1|). (8)

Here σx,y,z are the standard Pauli spin matrices with σx flipping
the spin from one state to the other with tunneling strength

(t ) and σz biasing the energy of states with magnitude ε(t ).
The system-bath coupling [previously f (q) in Eq. (3)] is ασz,
where α is the coupling strength between the open system and

the environmental oscillators. Equation (3) then becomes

i
dρ(t )

dt
= [H (t ), ρ(t )] − αη(t )[σz, ρ(t )]

− 1

2
αν(t ){σz, ρ(t )}. (9)

Finally, for the spin-boson Hamiltonian it is straightforward
to derive coupled SDEs for the x-, y-, and z-spins and Trρ(t )
directly,

dσx(t )

dt
= −[ε(t ) − 2αη(t )]σy(t ), (10)

dσy(t )

dt
= −
(t )σz(t ) + [ε(t ) − 2αη(t )]σx(t ), (11)

dσz(t )

dt
= 
(t )σy(t ) + iαν(t )Trρ(t ), (12)

dTrρ(t )

dt
= iαν(t )σz(t ). (13)

To be clear, these are expectation values of spins σx,y,z(t ) =
Tr(σx,y,zρ(t )) obtained from a single realization of the stochas-
tic reduced density matrix. The physical expectation values
would then be obtained by the average over many such real-
izations, 〈σx,y,z(t )〉.

III. NOISE GENERATION SCHEMES

The correlation functions given by Eqs. (4)–(6) act as
constraints on the noise generated but do not uniquely de-
fine them, leaving some freedom to specify the generation
procedure.

For the purpose of considering different representations
of the noises, we adopt the most general form of the linear
filtering ansatz [36],

η(t ) =
ˆ ∞

−∞
dt ′ ∑

j

Fj f j (t − t ′)x j (t
′), (14)

ν(t ) =
ˆ ∞

−∞
dt ′ ∑

j

G jg j (t − t ′)x j (t
′), (15)

where the { f j} and {g j} are real functions of time (henceforth
referred to as filters) which must be chosen such that the
correlation functions of Eqs. (4)–(6) are satisfied. Fj and Gj

are either 1 or the imaginary unit i and are also chosen to
be consistent with the correlation functions, and the {x j} are
real-valued white Gaussian uncorrelated noises.

A. Orthogonal decomposition

The form used above has the benefit that it is possible, if
desired, to decompose each noise into orthogonal components
that are correlated with only one other component [17,18].
This orthogonality can, e.g., be achieved by expressing the
noises as

η(t ) =
ˆ ∞

−∞
dt ′ f1(t − t ′)x1(t ′)

+
ˆ ∞

−∞
dt ′ f2(t − t ′)[x2(t ′) + ix3(t ′)], (16)
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ν(t ) =
ˆ ∞

−∞
dt ′g1(t − t ′)[ix1(t ′) + x4(t ′)]

+
ˆ ∞

−∞
dt ′g2(t − t ′)[x3(t ′) + ix2(t ′)], (17)

While it is possible to add an arbitrary number of terms of the
appropriate form containing pairs of noises as is done here,
we consider no more than one such term in the expansion of
η(t ) and up to two in ν(t ), since this restricts the number of
necessary white noises to the minimum possible number. We
emphasize that while this does represent a loss of generality
compared to Eqs. (14) and (15), there are three benefits. First,
autocorrelative and cross-correlative components of the noise
can be immediately identified by their structure, with, e.g., the
first term of Eq. (16) being autocorrelative while the second
term is cross-correlative. Second, the noise can be decom-
posed into orthogonal components which are co-correlated
with only one other component. For example, the term in-
volving f2 is correlated only with the term involving g2 and
no other terms. And, third, forming complex noise from pairs
of real noises ensures that their autocorrelation vanishes by
construction. This is especially useful for the ν noise which
has zero self-correlation.

The choice of filters f1, f2, g1, and g2 is then made by
relating the expectation values of the noises to the appropriate
correlation functions, Eqs. (4)–(6), and taking Fourier trans-
forms (indicated by a tilde). In particular,

K̃ηη(ω) = f̃1(ω) f̃1(−ω). (18)

Note that f̃ ∗(ω) = f̃ (−ω) for any real function f (t ). Since
Kηη(t ) is real and even, its Fourier transform is also real
and even, so K̃ηη(ω) = K̃ηη(−ω), and thus it is convenient to
choose f̃1(ω) to be real, hence

K̃ηη(ω) = f̃1(ω)2 ⇒ f̃1(ω) =
√

K̃ηη(ω), (19)

thus specifying the autocorrelative filter, f̃1(ω).
The correlation between η and ν, Kην (t ) of Eq. (20),

requires that the following constraint in Fourier space be
satisfied:

f̃1(ω)g̃1(−ω) + 2 f̃2(ω)g̃2(−ω) = R̃(ω), (20)

where R(t ) = −iKην (t ) [Eq. (5)]; note that R(t ) is a real func-
tion. Derivations of the Fourier transforms K̃ηη(ω) and K̃ην (ω)
and their properties are provided in Appendixes A 1 and A 2.
The three filters g̃1(ω), f̃1(ω), and f̃2(ω) are determined by
only a single condition [Eq. (20)], and hence their full specifi-
cation is subject to different possible choices, some of which
we now discuss.

1. Delta scheme

Choosing g1 to be zero and g2(t ) to be a δ function, gives

f2(t ) = − i

2
Kην (t ), (21)

g2(t ) = δ(t ). (22)

This choice can be reversed by switching the δ function
around. For obvious reasons, we refer to this as the delta
choice; it was made in previous work [17].

2. Constrained choice

Taking the constraint Eq. (20) and setting f̃2 and g̃2 to be
zero, this becomes a decomposition with f̃1 given by Eq. (19)
and g̃1 given by

g̃1(ω) = R̃(−ω)√
K̃ηη(ω)

. (23)

We refer to this as the constrained choice, since the two
filters f̃1(ω) and g̃1(ω) are fully constrained (defined) with no
flexibility.

3. Like scheme

In a similar fashion, g̃1(ω) can be set to zero instead of
f̃2(ω) and g̃2(ω), in which case Eq. (20) becomes

f̃2(ω)g̃2(−ω) = 1
2 R̃(ω). (24)

A possible choice for f̃2(ω) and g̃2(ω) is to require that
f̃2(ω) = g̃2(−ω) such that

f̃2(ω) =
√

1

2
R̃(ω) =

√
− i

2
K̃ην (ω), (25)

with g̃2(ω) simply given by sending ω → −ω on the right
hand side. For obvious reasons, we refer to this choice as the
like choice; it has been used by us previously [18].

4. Reduced scheme

Any combination of the like and constrained choices will
also be allowed, since they would satisfy the general defini-
tions of the noises (16) and (17). We introduce a set of filters
f̃1, f̃2, g̃1, and g̃2 which utilize both of the above choices via
the introduction of an auxiliary mixing function Ã(ω),

f̃1(ω) =
√

K̃ηη(ω), (26)

f̃2(ω) =
√

1
2 Ã(ω)R̃(ω), (27)

g̃1(ω) = R̃(−ω)√
K̃ηη(ω)

[1 − Ã(−ω)], (28)

g̃2(ω) =
√

1
2 Ã(−ω)R̃(−ω). (29)

Here the mixing function Ã(ω) controls which of the two
choices (like and/or constrained) is being used at each value
of ω, and it is easy to verify that these filters satisfy Eq. (20).
A similar expression was recently presented [20], though due
to incorrect definitions of the filters it was neither general
nor correct, as the properties of the Fourier transforms (see
Appendix A) were not satisfied in any case except for the auto-
correlative component of η, which is already fully determined.
The special cases of Ã(ω) = 0 and Ã(ω) = 1 correspond to
the constrained and like choices, respectively.

By examination of the evolution of Tr(ρ(t )) [Eq. (13)], it is
clear that the non-Hermitian (trace nonpreserving) dynamics
of the stochastic density matrix is driven solely by ν. The
spread of values of the trace will grow with time, just as the
variance of the displacement of a Brownian walker grows with
time, and this spreading requires an ever larger ensemble of
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realizations for the average trace to remain close to unity at
late times. We thus try to choose the mixing function Ã(ω) =
{0, 1} to reduce the average amplitude of ν(t ), noting that

〈|ν(t )|2〉 =
ˆ

dω

2π

{
2
|R̃(−ω)|2
K̃ηη(ω)

|1 − Ã(−ω)|2

+|R̃(−ω)||Ã(−ω)|}. (30)

We choose Ã(ω) = 0 when the first term in the integrand is
smaller than the second term; otherwise Ã(ω) should be 1,
that is (cf. Ref. [20]),

Ã(ω) =
{

0, when |R̃(−ω)|2/K̃ηη(ω) � |R̃(−ω)|
1, otherwise.

(31)

This choice, which can be done individually for every value of
ω, should then significantly reduce the average magnitude of
ν(t ), diminishing the impact of the non-Hermitian dynamics
and improving the convergence of the ensemble average. Thus
we refer to this as the reduced choice.

5. Optimized scheme

This naturally leads us to choosing the optimal mixing
function Ã(ω) which truly minimizes the average magnitude
of ν; this is the ν-optimized choice. Starting with Eq. (20), it
can be shown that the mixing function must be real and even
(see Appendix B). By setting the derivative of Eq. (30) with
respect to Ã(ω) equal to zero, we find the ν-optimized mixing
function to be

Ã(ω) = 1 − K̃ηη(ω)

4|R̃(ω)| . (32)

Substituting this Ã(ω) into Eqs. (27) and (29) gives the corre-
sponding filters as

f̃2(ω) =
√

R̃(ω)

2

[
1 − ζ

K̃ηη(ω)

|R̃(ω)|
]
, (33)

g̃1(ω) = ζ
R̃(−ω)

|R̃(ω)|
√

K̃ηη(ω), (34)

g̃2(ω) =
√

R̃(−ω)

2

[
1 − ζ

K̃ηη(ω)

|R̃(ω)|
]
, (35)

with f̃1(ω) =
√

K̃ηη(ω) as before, and ζ = 1/4.

An alternative approach would be to minimize 〈|η(t )|2〉 +
〈|ν(t )|2〉 rather than just the average magnitude of ν, by
considering

〈|η(t )|2〉 + 〈|ν(t )|2〉

=
ˆ

dω

2π
{K̃ηη(ω) + |R̃(ω)|[|Ã(ω)|

+|Ã(−ω)|] + 2
|R̃(ω)|2
K̃ηη(ω)

|1 − Ã(−ω)|2
}

for which the minimizing mixing function is

Ã(ω) = 1 − K̃ηη(ω)

2|R̃(ω)| ,

with its own f̃2, g̃1, and g̃2, which are defined by the same
Eqs. (33)–(35), but with ζ = 1/2. We refer to this as the ην-
optimized scheme.

The derivations of the minimizing mixing function for both
optimized choices are presented in Appendix B.

It is important to stress that minimizing the combined mag-
nitude 〈|η(t )|2〉 + 〈|ν(t )|2〉 will not necessarily minimize the
variance of the trace, nor the rate of its exponential growth. As
far as we are aware it is not possible to analytically minimize
the growth of the trace directly, so we are forced to approach
any optimization via an ansatz, in this case by introducing
the mixing function and making use of the freedom in its
definition. While the optimal mixing functions derived here
affect the properties of the noises as intended, they do not
guarantee that the behavior of the trace will be modified in
the desired way for all parameters or over all timescales. This
approach should be thought of as an indirect optimization of
the properties of the dynamics.

6. Dynamical rescaling

It is possible to go one step further by introducing a dy-
namical rescaling of the cross-correlative filters f̃2 and g̃2,
as was done for the like scheme in previous work [18]. This
type of scaling was first introduced for autocorrelative colored
noises in Ref. [37], and expanded to cross-correlative noises
in Ref. [18]. Since dividing f̃2(ω) by an arbitrary ω-dependent
factor χ̃ (ω) and multiplying g̃2(ω) by the same factor will
leave the correlation Kην between η and ν unchanged, we can
choose this factor optimally. However, attempting to minimize
〈|η(t )|2〉 + 〈|ν(t )|2〉 with respect to χ̃ (ω) in Fourier space for
each ω gives the result that χ̃ (ω) = ±1,±i, which is trivial.

As stated above, while this is the χ̃ (ω) which minimizes
the combined magnitude of the noises, it is more desirable to
minimize the growth of the trace directly. For this reason we
consider a similar scaling in the time domain, instead dividing
f2(t ) by a scaling factor and multiplying g2(t ) by that same
number, even though the scaling freedom is most apparent
in Fourier space. We can then choose the scaling factor to
minimize the rate of spreading of |Trρ(t )|. We do this by
sampling the final value of the trace for a range of scaling
factors and minimizing the standard error in the mean trace.
Note that where the optimization of the mixing function Ã
was analytical, choosing this optimal scaling is a numerical
procedure.

It is convenient to implement this scaling via the ratio
between the noises generated using f2 and g2 before any
scaling is applied, denoted here as η0 and ν0, respectively. The
scaled noises are then obtained from the unscaled noises as
ηnew = λνηη0 and νnew = ν0/λνη, where

λνη =
√

λ

√∑
n |ν0(tn)|∑
n |η0(tn)| , (36)

and λ is a parameter (to be determined) representing the de-
sired ratio between νnew and ηnew. Here the sums are over a
single realization of the noises in time, adding the value of the
noise at each discrete time, tn.
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B. Convex optimized scheme

It is also possible to optimize the noise generation scheme
in a different manner using the general form of the noises
(14) and (15), without explicitly introducing a mixing function
[21]. Instead of minimizing the average of the square magni-
tude of ν or the sum of square magnitudes of ν and η, the sum
of the imaginary parts of η and ν can be minimized, subject
to the correlations, by the method of convex optimization. We
can reproduce the analytical expression obtained in Ref. [21]
for the correlations of the real and imaginary components of
the noises η and ν using the following forms:

η(t ) =
ˆ ∞

−∞
dt ′ f1(t − t ′)x1(t ′) + i

ˆ ∞

−∞
dt ′ f2(t − t ′)x2(t ′),

(37)

ν(t ) =
ˆ ∞

−∞
dt ′g1(t − t ′)[x1(t ′) + ix2(t ′)]. (38)

The filters in Fourier space can be written as

f̃1(ω) = 1 − C̃(ω)√
1 − 2C̃(ω)

√
K̃ηη(ω), (39)

f̃2(ω) = C̃(ω)√
1 − 2C̃(ω)

√
K̃ηη(ω), (40)

g̃1(ω) =
√

1 − 2C̃(ω)
R̃(−ω)√
K̃ηη(ω)

, (41)

where

C̃(ω) = 1

2

{
1 −

[
4|R̃(ω)|2
K̃ηη(ω)2

+ 1

]−1/2}
. (42)

C. Deconvolution for reduced and constrained schemes

Division in Fourier space can introduce troublesome ampli-
fication for frequencies near which the denominator is close to
zero [34,38] [see, for example, Eq. (23)]. The C̃(ω) function
in the convex optimized scheme removes explicit divisions
where this would occur and can be implemented as it stands,
as it involves only division by 4|R̃(ω)|2 + K̃ηη(ω)2. The same
applies to the ν-optimized and ην-optimized schemes where
the filters remain finite since R̃/|R̃| has real and imaginary
parts which are bounded by ±1. Thus the constrained and
reduced schemes are the only schemes which include explicit

division by a filter in Fourier space, in this case by
√

K̃ηη(ω)
in Eqs. (23) and (28), so they require additional care.

This issue of frequency amplification around the zeros of√
K̃ηη(ω) can be eased by deconvolution methods. A decon-

volution is the inverse operation to a convolution which can
be naively interpreted as division in Fourier space. In prac-
tice, the process is more complex. Even for two deterministic
functions, there is always an issue of division close to zero,
or of rounding errors which can cause numerical instabilities
in the deconvolved signal after taking the inverse Fourier
transform [33,34]. In particular, these instabilities can depend
on properties of the signal such as its length tmax and spacing


t , since these affect the sensitivity of the Fourier transform
to small numbers.

We adopt the deconvolution method of Wiener filtering
[39] which minimizes the mean square error between some
desired quantity q(t ) to be determined and its estimate q̂(t ).
Considering the signal associated with q(t ) to be

y(t ) =
ˆ

dt ′ h(t − t ′)q(t ′) + ξ (t ), (43)

where h(t ) is the known response function of q(t ) and ξ (t )
is some unknown noise, the estimate of the signal in the time
domain is

q̂(t ) =
ˆ

dt ′ w(t − t ′)y(t ′), (44)

where we have introduced some “inverse” to the response
function, w(t ). In Fourier space this becomes

q̃(ω) = W̃ (ω)Ỹ (ω), (45)

with

W̃ (ω) = H̃∗(ω)

|H̃ (ω)|2 + 1
SNR

(46)

being the Fourier transform of the inverse response function
w(t ). Here H̃ (ω) and Ỹ (ω) are the Fourier transforms of h(t )
and y(t ), respectively. This W̃ (ω) is known as the Wiener
filter and is used as an estimate of H̃ (ω) with the problematic
frequency amplification removed. It arises directly from mini-
mizing the mean square error E|q̂(t ) − q(t )|2 [38,40]. Finally,
SNR is the signal to noise ratio, or, more concretely, it is the
ratio between the mean power spectral densities of the signal
and the noise. Typically for the Wiener filter, the SNR needs
to be estimated in some way, especially when the form of the
noise ξ (t ) is not exactly known [38,40] and is usually chosen
to be a constant value such that the signal is guaranteed to be
larger than the noise.

Adopting this method, the division by
√

K̃ηη in the
constrained and reduced schemes should be replaced with
multiplication by the corresponding Wiener filter,

1√
K̃ηη(ω)

→
√

K̃ηη(ω)

K̃ηη(ω) + γ maxω |
√

K̃ηη(ω)|
, (47)

with a signal-to-noise ratio SNR = [γ maxω |
√

K̃ηη(ω)|]
−1

where γ is a small parameter. This allows the correction
term to vary depending on the simulation time tmax, and to
stabilize the division while still remaining small. Note that this
is something of a numerical fix; it will modify the correlation
function 〈η(t )ν(t ′)〉 so that it no longer matches the desired
correlation Kην (t − t ′) [Eq. (5)] exactly, though the introduc-
tion of the small parameter γ allows us to control the size of
this deviation.

D. Deconvolution and causality

The instability of the direct Fourier division method can
be observed by investigating the behavior of the noises for
different lengths of the simulation, tmax. We compare in Fig. 1
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FIG. 1. Average magnitude of ν(t ) taken across 500 realizations for each tmax for (a) the constrained and (b) reduced schemes with (green)
and without (blue) the Wiener filter using γ = 0.01, β = 1, 
 = 1, ε = −1, α = 0.05, and ωc = 25.

the stability of these two schemes with and without the Wiener
filter, by observing the average magnitude of ν(t ) for different
values of tmax. The application of the Wiener filter to the re-
duced and constrained noise schemes improves their stability
enormously, in some cases by as much as an order of magni-
tude, and significantly weakens the erroneous dependence of
ν on tmax, though not removing it entirely. The trade-off for
this improvement is a violation of the η-ν correlation function
by introducing a breakdown of causality, as can be seen in
Fig. 2.

The application of deconvolution methods thus success-
fully stabilizes the tmax dependence of ν, decreasing its
average magnitude by reducing the power of frequencies
around the singularities in its spectral density. This improves
the convergence and maximum possible run time of the
dynamics, at the cost of weakening causality in the η-ν cor-
relation. Weakening the Heaviside function or removing it
entirely by hand also has this effect of smoothing the ν noise

FIG. 2. The η-ν correlation function with different values of the
parameter γ in the Wiener filter for the constrained noise scheme.
The ην optimized scheme overlaps with the desired correlation Kην

such that Kην could not be seen, so it is not shown. β = 1, tmax = 12,
dt = 0.01, ωc = 25, α = 0.05 for 104 realizations. The zoomed inset
highlights the region in which the symmetrization of the correlation
as γ increases can be clearly seen.

and reducing the likelihood of realizations which contain
atypically large values, in turn improving convergence.

While the causality of Kην is a requirement of the theory,
the introduction of the γ parameter gives us a method of
deconvolution for which we can ensure any deviation from
the theory is well controlled.

We have carried out tests of the above implementation
of deconvolution. In Fig. 3 we show the dynamics of the
z-spin 〈σz(t )〉 with a constant Hamiltonian [the relaxation to
the equilibrium case, Fig. 3(a)] and a Landau-Zener sweep
[nonequilibrium case, 3(b)]. The Landau-Zener sweep con-
sists of a linear driving of the form ε(t ) = κt , and has a known
analytic solution in the t → ∞ limit when the system was
initialized in the ground state |1〉 in the infinite past at zero
temperature [41]. This limit is [10,41–45]

〈σz〉LZ = 2 exp

{
−π
2

2h̄κ

}
− 1,

and though originally derived for an isolated spin, it has since
been shown that the same asymptotic behavior is valid for a
dissipative spin coupled to a harmonic environment at zero
temperature, when the coupling is provided entirely via σz

[46]. Note that this assumes that the system was initialized
in the infinite past, whereas here it was initialized at t = −5.
This is taken into account by modifying the limit appropri-
ately [18], though there is still some deviation associated
with the fact that the bath is not at zero temperature and
that the limit is asymptotic while the simulation time remains
finite.

We expect to recover the canonical equilibrium state
(associated with the constant Hamiltonian) [18] and the
Landau-Zener limit as known solutions at long times in
the two cases, and we investigate the constrained scheme
with the Wiener filter for a range of γ values, using the
ην-optimized scheme which minimizes the sum of magni-
tudes of η and ν as a reference. Without the Wiener filter
(γ = 0), the constrained scheme diverges almost immediately
for both test cases, whereas for very small γ = 0.001 there is
already an improvement, with the accessible simulation time
increasing by ∼5 times before 〈σz(t )〉 diverges. Note that the
behavior of the z-spin after divergence is omitted for clarity as
it oscillates wildly within an exponentially growing envelope.
As γ increases to ∼0.01 and then to ∼0.1, the constrained
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FIG. 3. Comparison of the calculated expectation of the z-spin 〈σz(t )〉 using the constrained scheme with a range of γ values to control
deconvolution, and the ην−optimized scheme 〈σην

z (t )〉, which minizes the combined magnitude of η and ν. (a) The system is initialized with
the z-spin being 1 and all other spins being zero and is evolved in time with a constant Hamiltonian, so that the z-spin relaxes to its equilibrium
value. The canonical equilibrium value of 0.05 for the spin, obtained using the imaginary time evolution methods outlined in Ref. [18], is
shown (dashed line) to confirm the validity of the optimized scheme. The inset shows the deviation of the z-spin for the constrained scheme
from the optimized one. A zoomed-in area at the final stages of equilibration shows the z-spin in detail. (b) A Landau-Zener sweep with a
time-dependent Hamiltonian where the system is driven linearly with ε(t ) = 5t , approaching a known asymptotic limit (dashed line). The
system is initialized at t = −5 with the z-spin equal to 1 and all other spins being zero, using the modified Landau-Zener limit of 0.516 to
account for the finiteness of the simulation window as outlined in [18]. For clarity, data are no longer plotted once they exceed the vertical
scales shown, as the solution becomes unstable and grows exponentially. β = 0.1, dt = 10−2, 
 = 1, ε = −1, α = 0.05, and ωc = 25 for 106

realizations.

schemes begin to converge well, more closely resembling
the ην-optimized scheme result 〈σην

z (t )〉 as can be seen in
the insets of Fig. 3 where the difference between them is
shown. The statistical convergence is best for larger values of
γ , most noticeably for γ = 10, though such a strong Wiener
filter introduces a significant deviation from the ην-optimized
scheme and the known solutions, as can clearly be seen in both
the inset and zoomed region in Fig. 3(a). The same is true
in the nonequilibrium Landau-Zener case, Fig. 3(b), where
for smaller γ the z-spin converges poorly while for larger γ

it converges better at the expense of introducing a deviation
from the solution used as a reference. Thus a compromise
value of γ must be chosen.

The best γ value can be chosen by computing the in-
tegrated absolute deviation,

´
dt ′|〈σz(t )〉 − 〈σην

z (t )〉|, for the
data ranges shown in the insets of Fig. 3, presented in Fig. 4.
This can be thought of as the total deviation from the ην-
optimized scheme within the region where the convergence of
the schemes are comparable, with results for γ = 0 and 0.001
not shown since they do not remain well converged on useful
timescales. The γ which minimizes this quantity is the one
with the smallest deviation from the correct dynamics which
we find to be γ = 0.01 for both the constant Hamiltonian and
Landau-Zener cases. By minimizing this deviation, we ensure
that the breakdown of causality is well controlled while still
managing to correctly handle the deconvolution and improve
the convergence of the system properties.

IV. RESULTS

A. Verifying SLN dynamics with a quantum
nondemolition model

In this section, we verify the validity of the SLN equa-
tion by comparing the numerical results for ρ(t ) simulated

using the ην-optimized scheme with the analytical result
obtained for a quantum nondemolition model [47]. The model
considered [6] is a zero-temperature model with Hs = − 1

2σz,
the coupling to the environment is given by f = σz, and
the environment’s correlation function is taken to be K (t ) =
1
2 exp {−2|t | + it}. Since f and the Hamiltonian commute, the
coupling can be thought of as an ideal projective measurement
of the open system so as to not disturb its energy [48]. This
model can be described exactly by the deterministic master

FIG. 4. The total absolute deviation of the dynamics produced
using the constrained scheme for different γ from the dynamics
produced using the ην-optimized scheme. Values were calculated
using the data shown in the insets of Figs. 3(a) and 3(b). Results for
γ = 0 and 0.001 are not shown because the dynamics is diverging so
the deviation is very large. The value of γ which minimizes the total
deviation for both the constant Hamiltonian [open circles, Fig. 3(a)]
and the Landau-Zener sweep [filled circles, Fig. 3(b)] is 0.01.
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FIG. 5. Dynamics of the (01) element of the reduced density matrix according to the quantum nondemolition model, showing the real part
Re[〈ρ01(t )〉] in (a), and the imaginary part Im[〈ρ01(t )〉] in (b). The exact solution (black line) is compared to the SLN numerical solutions for
1000 (blue line) and 50 000 (green line) realizations, using the ην-optimized scheme with optimal scaling λ = 0.5 (see Sec. IV C).

equation [4,49]

i
d〈ρ(t )〉

dt
= [Hs, 〈ρ(t )〉] − iCr (t )[ f , [ f , 〈ρ(t )〉]]

+ Ci(t )[ f 2, 〈ρ(t )〉], (48)

where Cr/i(t ) = ´ t
0 dτKr/i(t − τ ) with Kr (t ) = Re[K (t )] and

Ki(t ) = Im[K (t )]. The analytical solution of Eq. (48) is eas-
ily found and can be compared to SLN dynamics computed
numerically with any of the noise schemes we have consid-
ered above, and with correlations Kηη = Re[K (t )] and Kην =
2iIm[K (t )].

The SLN dynamics using the ην-optimized scheme is
shown in Fig. 5, along with the analytical solution of Eq. (48),
using the initial condition 〈ρ(t0)〉 = 0.5I + 0.5σx + 0.6σy.

It is clear that the numerical simulation for a stochastic
average of 50 000 realizations matches the analytical solution
for the real and imaginary parts of the density matrix ele-
ment 〈ρ01(t )〉 very well. This off-diagonal element is rapidly
damped to zero as the environment induces dephasing, with
the SLN exhibiting good convergence beyond the initial de-
phasing and into the equilibrium regime. Additionally, for
a much smaller sample of only 1000 realizations, the SLN
captures the exact dynamics well for short timescales t � 2.
Having verified the validity of the SLN equation, in the next
section we investigate the numerical efficiency of the noise
schemes introduced in Sec. III.

B. Error control

The purpose of the optimization schemes developed here
is to minimize the typical amplitude of the ν noise, since
it drives the (potentially) exponential growth of the trace of
the stochastic density matrix [Eq. (13)]. This should increase
the accessible simulation time (after which convergence is
destroyed by numerical blow up), and reduce the variance of
observables.

Without some kind of optimization, naive choices such as
the delta scheme (Sec. III A 1) in which one of the com-
ponents of η or ν is purely white noise, tend to perform
badly, or even be entirely pathological. The inclusion of white
noise whose variance is one or two orders of magnitude

greater than the trace Tr(ρ) ∼ 1 requires an excessive num-
ber of realizations �106 for the correlation functions (4)–(6)
to converge [17], though this by itself does not guarantee
well behaved physical dynamics. Instead, the dynamics of
the trace (or observables) is highly unstable even on very
short timescales, being equally likely to diverge to +∞ as to
−∞. The physical average of such diverging observables will
thus tend to zero as the white noise dominates the dynamics,
effectively drowning out the coupling to the environment via
the colored noise. It is also clear that any attempt to nor-
malize with the trace when an instability of this kind has
occurred is inappropriate, requiring both division by zero as
well as by very large numbers [15,18]. For these reasons we
do not present any data for the delta scheme, and simply
remark that this choice of noise generation scheme is entirely
pathological and should not be used, providing an excellent
illustration that it is not sufficient merely to satisfy the neces-
sary correlation functions when driving systems using an SLN
framework.

The other schemes all mark a drastic improvement on the
naive delta scheme, as is seen from Fig. 6. Recall that the like
scheme (Sec. III A 3) and constrained scheme (Sec. III A 2)
represent the two distinguishing choices, where η and ν

have cross-correlated orthogonal components, or where all
correlations are determined by f1 and g1 only, respectively.
The optimized choices, barring convex optimization, rely on
weighting these choices to reduce the variance of the trace and
extend the duration of stable dynamics.

Relative performance of the schemes is illustrated in Fig. 6,
where we show the mean of the magnitude of the trace |Trρ(t )|
[Figs. 6(a)–6(c)], its variance Figs. 6(d)–6(f)], and the stan-
dard error of the mean [Figs. 6(g)–6(i)] for all the schemes
at three inverse temperatures, β = 0.1, 1, 10. In particular,
the performance of the SLN can be quantified via the extent
to which the behavior of the average trace of the reduced
density matrix remains constant and close to unity, indicating
that the dynamics are physical and well converged, shown
in Figs. 6(a)–6(c). The physical situation is the same as in
Fig. 3(a), where the system is initialized in the state |1〉 with
the z-spin equal to 1 and all other spins being zero and re-
laxes towards the equilibrium state associated with a constant
Hamiltonian.
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FIG. 6. (a)–(c) The mean value of the trace, 〈Tr(ρ(t ))〉, calculated using different schemes with the system having been initialized in the
state |1〉 for a constant Hamiltonian. The absolute value of 〈Tr(ρ(t ))〉 is shown so that the linear growth on a logarithmic scale is clear. The
insets highlight the timescales on which the simulation is numerically stable, showing 〈Tr(ρ(t ))〉 directly; schemes are not shown for timescales
beyond which the trace is clearly diverging. (d–f) The variance of the trace and (g)–(i) the standard error of the mean trace calculated over
time windows which were 100 time steps long. For columns read from left to right, the inverse temperature increases as β = 0.1, 1, 10,
respectively. The like (red), constrained (blue), and reduced (green) schemes are shown, as well as the ν-optimized scheme which minimizes
〈|ν(t )|2〉 (black solid), ην-optimized scheme which minimizes the sum 〈|η(t )|2〉 + 〈|ν(t )|2〉 (black dashed), and the application of the convex
optimization scheme [21] as implemented using Eqs. (37)–(42) (yellow). All calculations have been done using the same system as in Fig. 3(a).

 = 1, ε = −1, α = 0.05, 
t = 10−2, ωc = 25, and 105 realizations. No rescaling of the noises was employed.

In general, either of the optimized schemes represent a very
significant improvement in the convergence properties and
stability of the trace for the inverse temperatures used, with the
growth in the variance of the trace being drastically reduced
[Figs. 6(d)–6(f)], allowing an increase in the duration of the
stable region [Figs. 6(a)–6(c)]. However, minimizing the typ-
ical magnitude of ν only is found not sufficient to guarantee
this reduction in the variance of the trace for all temperatures,
with the performance of the ν-optimized scheme similar only
to the ην-optimized and convex optimized schemes at lower
temperatures (β = 1, 10), but performing much worse at high
temperatures (β = 0.1).

This is understood by comparing Figs. 6(d) and 6(f) for the
variance, where the ν-optimized scheme and the like scheme
both fail for small β while the ην-optimized scheme performs

well. This is caused by the presence of coth( 1
2β h̄ω) in Kηη

[Eq. (4)], which diverges as β becomes small. Since corre-
lation of ν with η enters via the autocorrelative part of η in
the reduced scheme, the amplitude of η when generated
by the reduced scheme will be smaller than when generated
by the like scheme, as no other noise component is added to
the autocorrelative part. This also explains why the reduced
and constrained schemes perform well for β = 0.1 Figs. 6(a),
6(d), and 6(g)]. By accounting for this, the ην-optimized
scheme is an improvement on the ν-optimized scheme de-
spite the fact that ν alone is responsible for the intrinsic
exponential growth of the trace; this acts as a reminder that
these optimization schemes are indirect, in the sense that they
do not optimize the properties of the dynamics of the trace
directly.
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FIG. 7. (a) The standard error of 〈Trρ(t )〉 at its final time step tmax as a function of the scaling factor λ for several values of inverse
temperature β and coupling strength α. For each scaling factor, 1000 runs for real time dynamics were performed. tmax = 40, dt = 10−3,
ωc = 25, and 
 = 1, ε = −1 for α = 0.05, 0.1 and β = 0.1, 1, 10. In this case, the optimum value of λ which minimizes the growth of the
trace is ≈0.5. (b) The variance of the trace having used the ην-optimized scheme with scaling, with a desired ratio between f2(t ) and g2(t )
of λ = 0.5 (solid lines) for β = 0.1, 1, 10, with the mean trace shown in the inset. The convex optimized scheme (dashed lines) has been
reproduced here from Figs. 6(d)–6(f) for comparison.

Accounting for this temperature dependence, the raw ην-
optimized scheme (without any rescaling) and the application
of convex optimization are comparable, with the benefit that
these schemes are universal rather than depending strongly on
the temperature. It is quite fortunate, as if this were not the
case, an investigation of this kind would have to be performed
for every system when selecting a scheme.

C. ην-Optimized scheme with rescaling

In Fig. 7 we apply dynamical scaling to the f2 and g2 com-
ponents of η and ν as generated by the ην-optimized scheme,
Eqs. (33)–(35), with ζ = 1/2. By comparing in Fig. 7(a) the
value of |〈Trρ(t )〉| at the end of a constant Hamiltonian sim-
ulation for a range of rescaling values λ ∈ (0.01, 10) using
the procedure of Sec. III A 6, we find that the optimal value
of the scaling is λ = 0.5, which we note is the same value
obtained previously for the like scheme [18]. Rescaling the
noises with this optimal λ using the same parameters as in
Fig. 6, we find that the variance of the trace is reduced further,
shown in Fig. 7(b) alongside the convex optimized data from
Fig. 6 for comparison.

We find that the rescaled ην-optimized scheme is the best
scheme for generating noises which minimize the spread and
growth (see inset) of the trace for all the schemes considered,
at both high and low temperatures. From a practical perspec-
tive, the optimal λ can be quickly obtained with only 100
realizations or fewer for each value of λ, so does not represent
a meaningful increase in computational effort.

V. DISCUSSION AND CONCLUSIONS

In this paper we have developed a number of competing
noise generation schemes, capable of generating complex col-
ored noises appropriate for the implementation of the stochas-
tic Liouville–von Neumann equation. These noises represent
the interaction between the system of interest and its environ-
ment and must satisfy the correlation functions of Eqs. (4)
and (5), with the physical interpretation that averaging

over the manifestations of these noises is equivalent to averag-
ing over all possible behaviors of the bath. All of the schemes
proposed here do satisfy the desired correlations, but do not
otherwise perform equally; that is, the required sample size
for convergence is not uniform between schemes, and nor is
the quality of the subsequent driven dynamics of the reduced
system density matrix. This leads to the important point that
there is significant flexibility in the definitions of the noises,
as they are not uniquely defined by the correlation functions
which they must satisfy.

At all stages in this work, great care has been taken to be
as transparent and explicit in the development as possible,
in terms of both the presentation of analytical solutions and
the numerical implementation of the schemes subsequently
developed.

Within the general linear filtering ansatz [Eqs. (14) and
(15)] we have identified a subclass of schemes, which we
refer to as orthogonal decompositions [17], where the noises
are decomposed into components which are correlated with
only one other component (or with themselves) and have the
beneficial property that zero self-correlation can be fulfilled
by construction. There is no limit to the possible choices of
the filters with which these components might be generated
from white noise, though we focus on two such choices
for the cross-correlative components between the η and ν

noises: the delta scheme (Sec. III A 1) where one of the noise
components is chosen to be purely white noise, and the like
scheme (Sec. III A 3) where the filters are chosen so that
one is equal to the other with ω → −ω. The delta scheme
represents the worst of the choices, requiring sample sizes of
at least ∼106 for the correlation functions to converge while
still producing unstable dynamics for which the trace rapidly
diverges to ±∞. This is a prime demonstration that satisfying
the correlation functions alone is not sufficient to guarantee
well-behaved dynamics, or that unrealistically large samples
might be required before the dynamics converges.

Building on an alternative structure for the noises which
cannot be written as an orthogonal decomposition, we fol-
lowed the arguments in Ref. [20] to develop a scheme which
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chooses either the like or constrained scheme (of Sec.s III A 3
and III A 2, respectively) at each ω to reduce the average
magnitude of the ν noise which controls the spreading of
the trace of the reduced system density matrix. Crucially, by
introducing a mixing function Ã(ω) to blend the schemes and
performing a minimization in Fourier space to choose it, we
were able to ensure that the mixing function was introduced to
the filters in Eqs. (27)–(29) correctly such that the properties
of the Fourier transforms of the correlation functions were
maintained. Further, by exploiting these properties and deriv-
ing the Fourier transforms in full, we were able to identify that
the enforcement of causality in the η-ν correlation was respon-
sible for a logarithmic divergence in its Fourier transform.
This in turn causes an amplification of the noise power for
frequencies around the cutoff frequency of the spectral density
of the bath, resulting in weaker convergence than if causality
was not required. Fortunately, by employing the Wiener filter
for deconvolutions in Sec. III C, we were able to parametrize
a weakening of causality in cases where division by zero (or
very small numbers) in Fourier space would cause the spectral
densities of the noises to diverge, ensuring that any deviation
from the theory was well controlled while significantly reduc-
ing the ν noise power.

Going one step further, we explicitly minimized the av-
erage amplitude of both the ν noise, and the combined
amplitudes of the η and ν noises together, in the ν-optimized
and ην-optimized schemes, respectively. We then exploited
an additional freedom in the relative amplitudes of corre-
lated noise components by increasing the noise power of
one component while reducing the noise power of the other
by the same amount so that the correlation functions are
unchanged. We showed that analytic minimization of the am-
plitudes of the noises yields a trivial rescaling, but that direct
numerical minimization of the standard error of the trace
allows us to obtain an optimal scaling. We emphasize that
this scaling is an entirely independent freedom to the mixing
function, and suggest that there may be many other freedoms
and equivalent noise constructions, leaving space for future
work.

Finally, we measured the performance of the aforemen-
tioned schemes along with an alternative optimized scheme
(Sec. III B) based on convex optimization [21] for a range of
inverse temperatures, paying special attention to the properties
of the reduced system trace as a measure of the deviation
from the physical dynamics, as well as its convergence over
a set of realizations. By measuring the variance and standard
error of the mean of the trace, and inspecting how the time
at which numerical breakdown occurs varies for each scheme,
we were able to explain why some schemes performed better
at different temperatures than others in terms of competing
noise amplitudes between η and ν, and clearly identified that
the rescaled ην-optimized scheme performed universally the
best out of all the schemes at all temperatures. Remarkably,
this optimization reduced the variance of the trace by as much
as ∼1095 at low temperatures and ∼1015 at high temperatures.
The SLN equation is then compared with the exact solution
of a simple quantum nondemolition model, for which near
perfect agreement is obtained with statistical convergence
extending beyond initial dynamics and into the equilibrium
regime.

While comparison with other methods was not within the
scope of this paper, we remark that methods which use ap-
proximate forms of the bath response function and do not
rely so heavily on noises, e.g., the hierarchical equations
of motions [5,8], achieve well-converged results for strong
coupling. However, for weaker coupling or arbitrary spectral
densities and bath response functions the SLN remains exact,
opening an avenue of research for non-Markovian reservoir
engineering [50,51]. We hope that this study will stimulate
further work in improving the optimization of the simulation
schemes and consequently will open avenues for practical
numerical simulations of open quantum systems using SLN
and ESLN approaches.
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APPENDIX A: FOURIER TRANSFORMS

In deriving the different noise generation schemes
(Sec. III), it was necessary to use the properties of the Fourier
transform of the η − η correlation function Kηη(t ) and the
η − ν correlation function Kην (t ) which we reproduce here.

1. K̃ηη(ω)

Recalling the definition of Kηη(t ) [Eq. (4)], its Fourier
transform K̃ηη(ω) is

K̃ηη(ω) = h̄

2

ˆ ∞

−∞
dt
ˆ ∞

0

dω′

π
�(ω′)[e−i(ω−ω′ )t + e−i(ω+ω′ )t ],

(A1)

where we have used the shorthand �(ω) = J (ω)coth( 1
2β h̄ω)

and replaced the cosine with complex exponentials. Using the
definition of the δ function to remove the time integral,

δ(ω) = 1

2π

ˆ ∞

−∞
dte±iωt , (A2)

we arrive at the final result,

K̃ηη(ω) = h̄
ˆ ∞

0
dω′�(ω′)[δ(ω − ω′) + δ(ω + ω′)]

= h̄�(|ω|), (A3)

and we can see that K̃ηη(ω) is both real, even and everywhere
positive.

2. K̃ην(ω)

Recalling the definition of Kην (t ), Eq. (5), its Fourier trans-
form K̃ην (ω) is

K̃ην (ω) = 1

2iπ

ˆ ∞

0

dω′

π
J (ω′) lim

ε→0+

ˆ ∞

−∞

d�

� + iε

×
ˆ ∞

−∞
dt[e−i(ω+�−ω′ )t − e−i(ω+�+ω′ )t ], (A4)
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where we have replaced the Heaviside step function with

	(t ) = lim
ε→0+

− 1

2iπ

ˆ ∞

−∞
d�

e−i�t

� + iε
(A5)

and replaced the sine with complex exponentials. Again, rec-
ognizing the definition of the δ function, Eq. (A2), to remove
the time integral and then using the δ functions to evaluate the
� integral, we arrive at the following:

K̃ην (ω)

= −i lim
ε→0+

ˆ ∞

0

dω′

π
J (ω′)

[
1

ω′ − ω + iε
+ 1

ω′ + ω − iε

]
.

(A6)

We then take the ε → 0+ limit to remove the pole,

lim
ε→0+

1

ω′ − ω ± iε
= P 1

ω′ − ω
∓ iπδ(ω′ − ω) (A7)

(P stands for Cauchy principal value), to obtain

K̃ην (ω) =
ˆ ∞

0
dω′J (ω′)[δ(ω′ + ω) − δ(ω′ − ω)]

− i

π

 ∞

0
dω′J (ω′)

(
1

ω′ − ω
+ 1

ω′ + ω

)
(A8)

= −sgn(ω)J (|ω|) − 2i

π

 ∞

0
dω′ ω′J (ω′)

ω′2 − ω2
, (A9)

where
ffl

also corresponds to Cauchy principal value. Note that
R̃(ω) = −iK̃ην (ω), so we immediately see that the real part of
K̃ην (and the imaginary part of R̃) is odd.

3. The singularity in K̃ην(ω)

From Eq. (A9), we see that the imaginary part of K̃ην (ω)
has an instability at ω′ = ω that is integrable due to the
Cauchy principle value. By writing Im[K̃ην (ω)] as

Im[K̃ην (ω)] = − 2

π

 ωc

0
dω′ ω

′2 f (ω′)
ω′2 − ω2

, (A10)

where f (ω) = [1 + ( ω
ωc

)2]
−2

and we have used the fact that
J (ω) is zero outside of the range of ω values 0 � ω � ωc, we
integrate it as follows:ˆ ωc

0
dx

x2 f (x)

x2 − ω2
=

ˆ ωc

0
dx

x2[ f (x) − f (ω)]

x2 − ω2

+ f (ω)
 ωc

0
dx

x2

x2 − ω2
. (A11)

Only the second term contains the instability, which can be
handled as ωc

0
dx

x2

x2 − ω2
=
ˆ ωc

0
dx + ω2

 ωc

0

dx

x2 − ω2

= ωc + ω

2
ln

∣∣∣ωc − ω

ωc + ω

∣∣∣ (A12)

by breaking the Cauchy principal value integral into an inte-
gral from 0 to ω − ε and from ω + ε to ωc and seeing that the
result is independent of the infinitesimal ε. Hence Eq. (A11)
converges in the Cauchy sense, though a logarithmic diver-
gence at ω = ±ωc has appeared.

Applying this argument to Im[K̃ην (ω)] and simplifying, we
arrive at

Im [K̃ην (ω)] = − 2

π

(
ωc + ω

2
ln

∣∣∣ωc − ω

ωc + ω

∣∣∣) f (ω)

+ 2

π

ω3
c

ω2
c + ω2

ˆ 1

0
dx

x2

(1 + x2)2

× [
ω2

c x2 + 2ω2
c + ω2

]
. (A13)

The remaining integrals are then evaluated by relation to the
arctangent to give

Im [K̃ην (ω)] = − 2

π

(
ωc + ω

2
ln

∣∣∣ωc − ω

ωc + ω

∣∣∣)[
1 +

( ω

ωc

)2]−2

+ 1

4π

ω3
c(

ω2
c + ω2

)[
(6 − π )ω2

c + (π − 2)ω2
]
.

(A14)

Thus the imaginary part of K̃ην is even and the real part of R̃
is odd.

The emergence of the logarithmic divergence when ω =
±ωc originates with the presence of the Heaviside step func-
tion in the ην correlation of Eq. (5), which by Eq. (A5) and
the use of the δ function introduces the singularity ∼ 1

ω′2−ω2 in
Eq. (A9). Since the Heaviside function is an intrinsic part of
the ην correlation, that is, it was rigorously derived [16] rather
than being included artificially, its presence is required by the
theory such that removing it any way would not be formally
correct.

APPENDIX B: OPTIMIZED MIXING FUNCTION Ã(ω)

1. Symmetry of Ã(ω)

It is possible to determine some general properties of
the real and imaginary parts of the mixing function Ã(ω) =
Ã1(ω) + iÃ(ω) simply from the properties of R̃. Recalling
Eq. (20) coming from K̃ην and generalizing to arbitrarily many
cross-correlative components,

f̃1(ω)g̃1(−ω) + 2
∑
j=2

f̃ j (ω)g̃ j (−ω) = R̃(ω), (B1)

we can then make use of the fact that { f j (t )} and {g j (t )} are all
real functions. Thus their Fourier transforms must have even
real parts and odd imaginary parts, since f̃ ∗(ω) = f̃ (−ω) for
any real function f (t ). Then, from Eqs. (A9) and (A14), we
see that R̃(ω) = R̃1(ω) + iR̃2(ω) has even real part R̃1 and odd
imaginary part R̃2. Using the shorthand f̃ j = f̃ j

R + i f̃ j
I

and
g̃ j = g̃ j

R + ig̃ j
I for the real and imaginary parts of the filters,

we thus have

R̃1(ω) =,

√
K̃ηη(ω)g̃R

1 (ω)

+ 2
∑
j=2

[
f̃ R

j (ω)g̃R
j (ω) + f̃ I

1 (ω)g̃I
j (ω)

]
, (B2)

for the real part, where we have used the fact that the real parts
of the filters are even and that the imaginary parts are odd, and
that f̃1(ω) =

√
K̃ηη(ω) is real. Similarly for the imaginary part
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we have

R̃2(ω) =
√

K̃ηη(ω)g̃I
1(ω)

+ 2
∑
j=2

[
f̃ R

j (ω)g̃I
j (ω) − f̃ I

j (ω)g̃R
j (ω)

]
. (B3)

For the case we are considering where we include only the
j = 2 term, and using the filters given by Eqs. (26)–(29), we
can determine the symmetry properties of the real and imag-
inary parts of the mixing function Ã(ω) = Ã1(ω) + iÃ2(ω).
Since g̃1(−ω) = g̃∗

1(ω), the general g̃1 filter (28) requires

[1 − Ã1(ω) − iÃ2(ω)][R̃1(ω) + iR̃2(ω)]

= [1 − Ã1(−ω) + iÃ2(−ω)][R̃1(−ω) − iR̃2(−ω)], (B4)

which constrains the real and imaginary parts as

[Ã1(ω) − Ã1(−ω)]R̃1(ω) = [Ã2(ω) + Ã2(−ω)]R̃2(ω), (B5)

−[Ã1(ω) − Ã1(−ω)]R̃2(ω) = [Ã2(ω) + Ã2(−ω)]R̃1(ω),
(B6)

respectively, where we have again used the symmetry proper-
ties of R̃. Assuming that Ã1(ω) − Ã1(−ω) �= 0, then Ã2(ω) +
Ã2(−ω) �= 0 and dividing Eq. (B5) by (B6) would require that
R̃1(ω)2 = −R̃2(ω)2 which is obviously incorrect since they
are both real. Therefore Ã1(ω) = Ã1(−ω) and then Ã2(ω) =
−Ã2(−ω), i.e., the real part of the mixing function must be
even and the imaginary part must be odd.

Note that the same analysis of Eqs. (27) and (29) results in
exactly the same conditions for the mixing function.

2. Minimizing magnitude of ν(t )

Starting with ν as it is written in Eq. (17), its magnitude is

〈|ν(t )|2〉 =
ˆ

dω

2π
K̃νν∗ (ω) =

ˆ
dω

2π
{2|g̃1(ω)|2 + 2|g̃2(ω)|2},

(B7)

where Kνν∗ (t ) = 〈ν(t )ν∗(t )〉 and we have made use of Par-
seval’s theorem to remove the exponential factor associated
with the inverse Fourier transform. While it may at first seem
strange that there is no time dependence on the right-hand
side, there is no reason why 〈|ν(t )|〉2 should not be stationary.
In fact, this apparent stationarity is a direct consequence of the
form of the noises (16) and (17) containing time differences in
the filters. Substituting in the above expression Eqs. (28) and
(29) and making use of the fact that K̃ηη(ω) is real and even,
that the real part of R̃(ω) = R̃1(ω) + iR̃2(ω) is even while
the imaginary part is odd, we obtain Eq. (30) for 〈|ν(t )|2〉.
We have also used the fact that the magnitude of a complex
function whose real and imaginary parts are either even or
odd is always real, even and positive. The aim now is to min-
imize K̃νν∗ (ω) with respect to the real and imaginary parts of
the mixing function Ã(ω) = Ã1(ω) + iÃ2(ω) at each ω value,
where we know that the real part of Ã should be even and the
imaginary part odd. Starting with the real part,

dK̃νν∗ (ω)

dÃ1(ω)
= |R̃(ω)|

K̃ηη(ω)

[
4|R̃(ω)| + K̃ηη(ω)

Ã1(ω)

|Ã(ω)|
]

= 0, (B8)

which yields the following constraint on Ã1 and its magnitude:

Ã1(ω)

[
4|R̃(ω)| + K̃ηη(ω)

|Ã(ω)|
]

= 4|R̃(ω)|. (B9)

Minimizing with respect to the imaginary part of the mix-
ing function then gives

dK̃νν∗ (ω)

dÃ2(−ω)
= |R̃(ω)|

K̃ηη(ω)
Ã2(−ω)

[
4|R̃(ω)| + K̃ηη(ω)

|Ã(−ω)|
]

= 0,

(B10)

so that Ã must either be real with Ã2(ω) = 0, or the terms
within the square brackets must equal zero. If the latter was
true, then Eq. (B9) would require that |R̃(ω)| = 0 which is
certainly not correct (also, both terms inside the square brack-
ets are positive), so Ã is indeed real, Ã(ω) = Ã1(ω). Equation
(B9) then gives

Ã(ω) = 1 − sgn[Ã(ω)]
K̃ηη(ω)

4|R̃(ω)| . (B11)

Since Ã < 0 would lead to a contradiction (K̃ηη/|R̃| is always
positive, so the right-hand side would then be positive), we
must conclude that Ã is a positive function, leading finally to

Ã(ω) = 1 − K̃ηη(ω)

4|R̃(ω)| . (B12)

Substituting this Ã into the filters of Eqs. (27)–(29) gives
Eqs. (33)–(35). It is worth noting that the division by |R̃(ω)|
does not require serious consideration using the deconvolution
procedure as detailed in Sec. (III C) since it appears as only
a combination R̃(ω)/|R̃(ω)|. Since |R̃| � R̃, this ratio will
always converge without any division by small numbers.

3. Minimizing magnitudes of η(t ) and ν(t )

We now consider the sum

〈|η(t )|2〉 + 〈|ν(t )|2〉 =
ˆ

dω

2π
[K̃ηη(ω) + K̃νν∗ (ω)]

=
ˆ

dω

2π
[ f̃1(ω)2 + 2| f̃2(ω)|2

+ 2|g̃1(ω)|2 + 2|g̃2(ω)|2], (B13)

and insert Eqs. (26)–(29) to obtain

K̃ηη(ω) + K̃νν∗ (ω) = K̃ηη(ω) + 2|R̃(ω)||Ã(ω)|

+ 2
|R̃(ω)|2
K̃ηη(ω)

|1 − Ã(ω)|2, (B14)

where we have again used the properties of K̃ηη and R̃, and the
fact that Ã must be an even function. The essential difference
of the obtained expression from Eq. (30) for 〈|ν(t )|2〉 is only in
the factor of two in the last term. Hence, repeating the analysis
of the previous Appendix we obtain

Ã(ω) = 1 − K̃ηη(ω)

2|R̃(ω)| . (B15)

Note that the same result can be obtained without initially
using the fact that Ã is an even function, in which case it is
more convenient to write Ã in the form Ã(ω) = r(ω)eiθ (ω).
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