2,131 research outputs found

    Vibration suppression and slewing control of a flexible structure

    Get PDF
    Examined here are the effects of motor dynamics and secondary piezoceramic actuators on vibration suppression during the slewing of flexible structures. The approach focuses on the interaction between the structure, the actuators, and the choice of control law. The results presented here are all simulated, but are based on experimentally determined parameters for the motor, structure, piezoceramic actuators, and piezofilm sensors. The simulation results clearly illustrate that the choice of motor inertia relative to beam inertia makes a critical difference in the performance of the system. In addition, the use of secondary piezoelectric actuators reduces the load requirements on the motor and also reduces the overshoot of the tip deflection. The structures considered here are a beam and a frame. The majority of results are based on a Euler Bernoulli beam model. The slewing frame introduces substantial torsional modes and a more realistic model. The slewing frame results are incomplete and represent work in progress

    Static and dynamic characteristics of a piezoceramic strut

    Get PDF
    The experimental study of a piezoceramic active truss is presented. This active strut is unique in that the piezoceramic configurations allow the stroke length of the strut not to be dependent on the piezoceramic material's expansion range but on the deflection range of the piezoceramic bender segment. A finite element model of a piezoceramic strut segment was constructed. Piezoceramic actuation was simulated using thermally induced strains. This model yielded information on the stiffness and force range of a bender element. The static and dynamic properties of the strut were identified experimentally. Feedback control was used to vary the stiffness of the strut. The experimentally verified model was used to explore implementation possibilities of the strut

    Planets in Spin-Orbit Misalignment and the Search for Stellar Companions

    Full text link
    The discovery of giant planets orbiting close to their host stars was one of the most unexpected results of early exoplanetary science. Astronomers have since found that a significant fraction of these 'Hot Jupiters' move on orbits substantially misaligned with the rotation axis of their host star. We recently reported the measurement of the spin-orbit misalignment for WASP-79b by using data from the 3.9 m Anglo-Australian Telescope. Contemporary models of planetary formation produce planets on nearly coplanar orbits with respect to their host star's equator. We discuss the mechanisms which could drive planets into spin-orbit misalignment. The most commonly proposed being the Kozai mechanism, which requires the presence of a distant, massive companion to the star-planet system. We therefore describe a volume-limited direct-imaging survey of Hot Jupiter systems with measured spin-orbit angles, to search for the presence of stellar companions and test the Kozai hypothesis.Comment: Accepted for publication in the peer-reviewed proceedings of the 13th annual Australian Space Science Conferenc

    Status reports of the fisheries and aquatic resources of Western Australia 2017/18. State of the fisheries

    Get PDF
    The Status Reports of the Fisheries and Aquatic Resources of Western Australia (SRFAR) provide an annual update on the state of the fish stocks and other aquatic resources of Western Australia (WA). These reports outline the most recent assessments of the cumulative risk status for each of the aquatic resources (assets) within WA’s six Bioregions using an Ecosystem Based Fisheries Management (EBFM) approach.https://researchlibrary.agric.wa.gov.au/an_sofar/1010/thumbnail.jp

    Congenital Viral Infections of the Brain: Lessons Learned from Lymphocytic Choriomeningitis Virus in the Neonatal Rat

    Get PDF
    The fetal brain is highly vulnerable to teratogens, including many infectious agents. As a consequence of prenatal infection, many children suffer severe and permanent brain injury and dysfunction. Because most animal models of congenital brain infection do not strongly mirror human disease, the models are highly limited in their abilities to shed light on the pathogenesis of these diseases. The animal model for congenital lymphocytic choriomeningitis virus (LCMV) infection, however, does not suffer from this limitation. LCMV is a well-known human pathogen. When the infection occurs during pregnancy, the virus can infect the fetus, and the developing brain is particularly vulnerable. Children with congenital LCMV infection often have substantial neurological deficits. The neonatal rat inoculated with LCMV is a superb model system of human congenital LCMV infection. Virtually all of the neuropathologic changes observed in humans congenitally infected with LCMV, including microencephaly, encephalomalacia, chorioretinitis, porencephalic cysts, neuronal migration disturbances, periventricular infection, and cerebellar hypoplasia, are reproduced in the rat model. Within the developing rat brain, LCMV selectively targets mitotically active neuronal precursors. Thus, the targets of infection and sites of pathology depend on host age at the time of infection. The rat model has further shown that the pathogenic changes induced by LCMV infection are both virus-mediated and immune-mediated. Furthermore, different brain regions simultaneously infected with LCMV can undergo widely different pathologic changes, reflecting different brain region–virus–immune system interactions. Because the neonatal rat inoculated with LCMV so faithfully reproduces the diverse neuropathology observed in the human counterpart, the rat model system is a highly valuable tool for the study of congenital LCMV infection and of all prenatal brain infections In addition, because LCMV induces delayed-onset neuronal loss after the virus has been cleared, the neonatal rat infected with LCMV may be an excellent model system to study neurodegenerative or psychiatric diseases whose etiologies are hypothesized to be virus-induced, such as autism, schizophrenia, and temporal lobe epilepsy

    Tempo and intensity of pre-task music modulate neural activity during reactive task performance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 The Authors.Research has shown that not only do young athletes purposively use music to manage their emotional state (Bishop, Karageorghis, & Loizou, 2007), but also that brief periods of music listening may facilitate their subsequent reactive performance (Bishop, Karageorghis, & Kinrade, 2009). We report an fMRI study in which young athletes lay in an MRI scanner and listened to a popular music track immediately prior to performance of a three-choice reaction time task; intensity and tempo were modified such that six excerpts (2 intensities × 3 tempi) were created. Neural activity was measured throughout. Faster tempi and higher intensity collectively yielded activation in structures integral to visual perception (inferior temporal gyrus), allocation of attention (cuneus, inferior parietal lobule, supramarginal gyrus), and motor control (putamen), during reactive performance. The implications for music listening as a pre-competition strategy in sport are discussed

    Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment.

    Get PDF
    Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+ Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1-mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention

    A multichannel frequency response analyser for impedance spectroscopy on power sources

    Get PDF
    A low-cost multi-channel frequency response analyser (FRA) has been developed based on a DAQ (data acquisition)/LabVIEW interface. The system has been tested for electric and electrochemical impedance measurements. This novel association of hardware and software demonstrated performance comparable to a commercial potentiostat / FRA for passive electric circuits. The software has multichannel capabilities with minimal phase shift for 5 channels when operated below 3 kHz. When applied in active (galvanostatic) mode in conjunction with a commercial electronic load (by discharging a lead acid battery at 1.5 A) the performance was fit for purpose, providing electrochemical information to characterize the performance of the power source

    Is Biomass a Reliable Estimate of Plant Fitness?

    Get PDF
    The measurement of fitness is critical to biological research. Although the determination of fitness for some organisms may be relatively straightforward under controlled conditions, it is often a difficult or nearly impossible task in nature. Plants are no exception. The potential for long-distance pollen dispersal, likelihood of multiple reproductive events per inflorescence, varying degrees of reproductive growth in perennials, and asexual reproduction all confound accurate fitness measurements. For these reasons, biomass is frequently used as a proxy for plant fitness. However, the suitability of indirect fitness measurements such as plant size is rarely evaluated. This review outlines the important associations between plant performance, fecundity, and fitness. We make a case for the reliability of biomass as an estimate of fitness when comparing conspecifics of the same age class. We reviewed 170 studies on plant fitness and discuss the metrics commonly employed for fitness estimations. We find that biomass or growth rate are frequently used and often positively associated with fecundity, which in turn suggests greater overall fitness. Our results support the utility of biomass as an appropriate surrogate for fitness under many circumstances, and suggest that additional fitness measures should be reported along with biomass or growth rate whenever possible

    Continued corrosion protection of aluminium alloy 2024 through layered double hydroxide UV-degradation

    Get PDF
    ABSTRACT: In the last decade, the necessity to improve corrosion protection has dramatically affected the industry. Layered double hydroxides emerge as a possibility to overcome this problem due to their ability as a carrier of corrosion protection species. In this work, cerium cations, which possess corrosion protection ability, were incorporated in the LDH structure via partial substitution of aluminium cations. The changes occurring to LDH when exposed for an extended period to UV-radiation and its degradation with release of Ce3+ from the hydroxide layers has been studied and is presented in this work.info:eu-repo/semantics/publishedVersio
    corecore