115 research outputs found

    On the Unity of 'Number' in Semantics and Morphology

    Get PDF

    Poor pronoun systems and what they teach us

    Get PDF
    The world’s smallest pronoun systems can eschew any of the following contrasts: (i) author–nonauthor, (ii) participant–nonparticipant, (iii) singular–nonsingular. This supports the view that features are mutually independent parameters (Harbour 2011a, 2014a, 2014b), but is problematic for Koeneman and Zeijlstra’s (2014) recent reworking of the Rich Agreement Hypothesis, which is predicated on the claim that (i)–(iii) are universally obligatory.

    Elements of number theory

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Linguistics and Philosophy, 2003.Includes bibliographical references (leaves 202-205).The dissertation argues for the necessity of a morphosemantic theory of number, that is, a theory of number serviceable both to semantics and morphology. The basis for this position, and the empirical core of the dissertation, is the relationship between semantically based noun classification and agreement in Kiowa, an indigenous, endangered language of Oklahoma. The central claim is that Universal Grammar provides three number features, concerned with unithood, existence of homogeneous subsets, and properties of those subsets. The features are used to analyze a wide variety of data. Semantic topics include the difference between granular and non-granular mass nouns, collective, non-collective and distributive plurals, and cardinality. Syntactic topics include the structure of DP, noun marking, agreement and suppletion. Morphological topics include the inventory of morphological operations, the featural basis of complex syncretisms, the difference between agreement and suppletion, whether features are privative or binary, and the nature of the Kiowa/Tanoan inverse. Keywords: Kiowa-Tanoan, number, morphology, semantics, agreement, suppletion, inverse, noun class, singular, dual, plural, features, binary, privative.by Daniel Harbour.Ph.D

    Cognitive Primitives of Collective Intentions: Linguistic Evidence of Our Mental Ontology

    Get PDF
    Theories of collective intentions must distinguish genuinely collective intentions from coincidentally harmonized ones. Two apparently equally apt ways of doing so are the ‘neo‐reductionism’ of Bacharach (2006) and Gold and Sugden (2007a) and the ‘non‐reductionism’ of Searle (1990, 1995). Here, we present findings from theoretical linguistics that show that we is not a cognitive primitive, but is composed of notions of I and grouphood. The ramifications of this finding on the structure both of grammatical and lexical systems suggests that an understanding of collective intentionality does not require a primitive we‐intention, but the notion of grouphood implicit in team reasoning, coupled with the individual concept I. This, we argue, supports neo‐reductionism but poses difficulties for non‐reductionism

    BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers

    Get PDF
    The BAP1 tumor suppressor is mutated in many human cancers such as uveal melanoma, leading to poor patient outcome. It remains unclear how BAP1 functions in normal biology or how its loss promotes cancer progression. Here, we show that Bap1 is critical for commitment to ectoderm, mesoderm, and neural crest lineages during Xenopus laevis development. Bap1 loss causes transcriptional silencing and failure of H3K27ac to accumulate at promoters of key genes regulating pluripotency-to-commitment transition, similar to findings in uveal melanoma. The Bap1-deficient phenotype can be rescued with human BAP1, by pharmacologic inhibition of histone deacetylase (HDAC) activity or by specific knockdown of Hdac4. Similarly, BAP1-deficient uveal melanoma cells are preferentially vulnerable to HDAC4 depletion. These findings show that Bap1 regulates lineage commitment through H3K27ac-mediated transcriptional activation, at least in part, by modulation of Hdac4, and they provide insights into how BAP1 loss promotes cancer progression.Fil: Kuznetsov, Jeffim N.. University of Miami; Estados UnidosFil: Agüero, Tristán Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. University of Miami; Estados UnidosFil: Owens, Dawn A.. University of Miami; Estados UnidosFil: Kurtenbach, Stefan. University of Miami; Estados UnidosFil: Field, Matthew G.. University of Miami; Estados UnidosFil: Durante, Michael A.. University of Miami; Estados UnidosFil: Rodriguez, Daniel A.. University of Miami; Estados UnidosFil: King, Mary Lou. University of Miami; Estados UnidosFil: Harbour, J. William. University of Miami; Estados Unido

    TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity

    Get PDF
    Acting in concert with TGF-b, IL-6 signaling induces Th17 cell development by programming Th17-related genes via STAT3. A role for IL-6 signaling beyond the inductive phase of Th17 cell development has not been defined, as IL-23 signaling downstream of Th17 cell induction also activates STAT3 and is thought responsible for Th17 cell maintenance. Here, we find that IL-6 signaling is required for both induction and maintenance of Th17 cells; IL-6Ra–deficient Th17 cells rapidly lost their Th17 phenotype and did not cause disease in two models of colitis. Cotransfer of WT Th17 cells with IL-6Ra–deficient Th17 cells induced colitis but was unable to rescue phenotype loss of the latter. High IL-6 in the colon promoted classic, or cis, rather than trans receptor signaling that was required for maintenance of Th17 cells. Thus, ongoing classic IL6 signaling underpins the Th17 program and is required for Th17 cell maintenance and function

    Co-Depletion of Cathepsin B and uPAR Induces G0/G1 Arrest in Glioma via FOXO3a Mediated p27Kip1 Upregulation

    Get PDF
    Cathepsin B and urokinase plasminogen activator receptor (uPAR) are both known to be overexpressed in gliomas. Our previous work and that of others strongly suggest a relationship between the infiltrative phenotype of glioma and the expression of cathepsin B and uPAR. Though their role in migration and adhesion are well studied the effect of these molecules on cell cycle progression has not been thoroughly examined.Cathepsin B and uPAR single and bicistronic siRNA plasmids were used to downregulate these molecules in SNB19 and U251 glioma cells. FACS analysis and BrdU incorporation assay demonstrated G0/G1 arrest and decreased proliferation with the treatments, respectively. Immunoblot and immunocyto analysis demonstrated increased expression of p27(Kip1) and its nuclear localization with the knockdown of cathepsin B and uPAR. These effects could be mediated by alphaVbeta3/PI3K/AKT/FOXO pathway as observed by the decreased alphaVbeta3 expression, PI3K and AKT phosphorylation accompanied by elevated FOXO3a levels. These results were further confirmed with the increased expression of p27(Kip1) and FOXO3a when treated with Ly294002 (10 microM) and increased luciferase expression with the siRNA and Ly294002 treatments when the FOXO binding promoter region of p27(Kip1) was used. Our treatment also reduced the expression of cyclin D1, cyclin D2, p-Rb and cyclin E while the expression of Cdk2 was unaffected. Of note, the Cdk2-cyclin E complex formation was reduced significantly.Our study indicates that cathepsin B and uPAR knockdown induces G0/G1 arrest by modulating the PI3K/AKT signaling pathway and further increases expression of p27(Kip1) accompanied by the binding of FOXO3a to its promoter. Taken together, our findings provide molecular mechanism for the G0/G1 arrest induced by the downregulation of cathepsin B and uPAR in SNB19 and U251 glioma cells

    VPS29 Is Not an Active Metallo-Phosphatase but Is a Rigid Scaffold Required for Retromer Interaction with Accessory Proteins

    Get PDF
    VPS29 is a key component of the cargo-binding core complex of retromer, a protein assembly with diverse roles in transport of receptors within the endosomal system. VPS29 has a fold related to metal-binding phosphatases and mediates interactions between retromer and other regulatory proteins. In this study we examine the functional interactions of mammalian VPS29, using X-ray crystallography and NMR spectroscopy. We find that although VPS29 can coordinate metal ions Mn2+ and Zn2+ in both the putative active site and at other locations, the affinity for metals is low, and lack of activity in phosphatase assays using a putative peptide substrate support the conclusion that VPS29 is not a functional metalloenzyme. There is evidence that structural elements of VPS29 critical for binding the retromer subunit VPS35 may undergo both metal-dependent and independent conformational changes regulating complex formation, however studies using ITC and NMR residual dipolar coupling (RDC) measurements show that this is not the case. Finally, NMR chemical shift mapping indicates that VPS29 is able to associate with SNX1 via a conserved hydrophobic surface, but with a low affinity that suggests additional interactions will be required to stabilise the complex in vivo. Our conclusion is that VPS29 is a metal ion-independent, rigid scaffolding domain, which is essential but not sufficient for incorporation of retromer into functional endosomal transport assemblies
    corecore