193 research outputs found

    A strain-variable bacteriocin in Bacillus anthracis and Bacillus cereus with repeated Cys-Xaa-Xaa motifs

    Get PDF
    Bacteriocins are peptide antibiotics from ribosomally translated precursors, produced by bacteria often through extensive post-translational modification. Minimal sequence conservation, short gene lengths, and low complexity sequence can hinder bacteriocin identification, even during gene calling, so they are often discovered by proximity to accessory genes encoding maturation, immunity, and export functions. This work reports a new subfamily of putative thiazole-containing heterocyclic bacteriocins. It appears universal in all strains of Bacillus anthracis and B. cereus, but has gone unrecognized because it is always encoded far from its maturation protein operon. Patterns of insertions and deletions among twenty-four variants suggest a repeating functional unit of Cys-Xaa-Xaa

    Orphan SelD proteins and selenium-dependent molybdenum hydroxylases

    Get PDF
    Bacterial and Archaeal cells use selenium structurally in selenouridine-modified tRNAs, in proteins translated with selenocysteine, and in the selenium-dependent molybdenum hydroxylases (SDMH). The first two uses both require the selenophosphate synthetase gene, selD. Examining over 500 complete prokaryotic genomes finds selD in exactly two species lacking both the selenocysteine and selenouridine systems, Enterococcus faecalis and Haloarcula marismortui. Surrounding these orphan selD genes, forming bidirectional best hits between species, and detectable by Partial Phylogenetic Profiling vs. selD, are several candidate molybdenum hydroxylase subunits and accessory proteins. We propose that certain accessory proteins, and orphan selD itself, are markers through which new selenium-dependent molybdenum hydroxylases can be found

    BrainGrab: Capturing Curator Expertise as Reusable Annotation Rules

    Get PDF

    Cell Contact–Dependent Outer Membrane Exchange in Myxobacteria: Genetic Determinants and Mechanism

    Get PDF
    Biofilms are dense microbial communities. Although widely distributed and medically important, how biofilm cells interact with one another is poorly understood. Recently, we described a novel process whereby myxobacterial biofilm cells exchange their outer membrane (OM) lipoproteins. For the first time we report here the identification of two host proteins, TraAB, required for transfer. These proteins are predicted to localize in the cell envelope; and TraA encodes a distant PA14 lectin-like domain, a cysteine-rich tandem repeat region, and a putative C-terminal protein sorting tag named MYXO-CTERM, while TraB encodes an OmpA-like domain. Importantly, TraAB are required in donors and recipients, suggesting bidirectional transfer. By use of a lipophilic fluorescent dye, we also discovered that OM lipids are exchanged. Similar to lipoproteins, dye transfer requires TraAB function, gliding motility and a structured biofilm. Importantly, OM exchange was found to regulate swarming and development behaviors, suggesting a new role in cell–cell communication. A working model proposes TraA is a cell surface receptor that mediates cell–cell adhesion for OM fusion, in which lipoproteins/lipids are transferred by lateral diffusion. We further hypothesize that cell contact–dependent exchange helps myxobacteria to coordinate their social behaviors

    A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPRs) are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21–37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas) protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer “immunity” against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated

    Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enzymes in the radical SAM (rSAM) domain family serve in a wide variety of biological processes, including RNA modification, enzyme activation, bacteriocin core peptide maturation, and cofactor biosynthesis. Evolutionary pressures and relationships to other cellular constituents impose recognizable grammars on each class of rSAM-containing system, shaping patterns in results obtained through various comparative genomics analyses.</p> <p>Results</p> <p>An uncharacterized gene cluster found in many Actinobacteria and sporadically in Firmicutes, Chloroflexi, Deltaproteobacteria, and one Archaeal plasmid contains a PqqE-like rSAM protein family that includes Rv0693 from <it>Mycobacterium tuberculosis</it>. Members occur clustered with a strikingly well-conserved small polypeptide we designate "mycofactocin," similar in size to bacteriocins and PqqA, precursor of pyrroloquinoline quinone (PQQ). Partial Phylogenetic Profiling (PPP) based on the distribution of these markers identifies the mycofactocin cluster, but also a second tier of high-scoring proteins. This tier, strikingly, is filled with up to thirty-one members per genome from three variant subfamilies that occur, one each, in three unrelated classes of nicotinoproteins. The pattern suggests these variant enzymes require not only NAD(P), but also the novel gene cluster. Further study was conducted using SIMBAL, a PPP-like tool, to search these nicotinoproteins for subsequences best correlated across multiple genomes to the presence of mycofactocin. For both the short chain dehydrogenase/reductase (SDR) and iron-containing dehydrogenase families, aligning SIMBAL's top-scoring sequences to homologous solved crystal structures shows signals centered over NAD(P)-binding sites rather than over substrate-binding or active site residues. Previous studies on some of these proteins have revealed a non-exchangeable NAD cofactor, such that enzymatic activity <it>in vitro </it>requires an artificial electron acceptor such as N,N-dimethyl-4-nitrosoaniline (NDMA) for the enzyme to cycle.</p> <p>Conclusions</p> <p>Taken together, these findings suggest that the mycofactocin precursor is modified by the Rv0693 family rSAM protein and other enzymes in its cluster. It becomes an electron carrier molecule that serves <it>in vivo </it>as NDMA and other artificial electron acceptors do <it>in vitro</it>. Subclasses from three different nicotinoprotein families show "only-if" relationships to mycofactocin because they require its presence. This framework suggests a segregated redox pool in which mycofactocin mediates communication among enzymes with non-exchangeable cofactors.</p

    Adult cardiac surgery during the COVID-19 Pandemic: A Tiered Patient Triage Guidance Statement

    Get PDF
    In the setting of the current novel coronavirus pandemic, this document has been generated to provide guiding statements for the adult cardiac surgeon to consider in a rapidly evolving national landscape. Acknowledging the risk for a potentially prolonged need for cardiac surgery procedure deferral, the authors have created this proposed template for physicians and interdisciplinary teams to consider in protecting their patients, institution and their highly specialized cardiac surgery team. In addition, recommendations on the transition from traditional in-person patient assessments and outpatient follow-up are provided. Lastly, we advocate that the cardiac surgeon must continue to serve as leaders, experts, and relevant members of our medical community, shifting our role as necessary in this time of need

    TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes

    Get PDF
    TIGRFAMs is a collection of protein family definitions built to aid in high-throughput annotation of specific protein functions. Each family is based on a hidden Markov model (HMM), where both cutoff scores and membership in the seed alignment are chosen so that the HMMs can classify numerous proteins according to their specific molecular functions. Most TIGRFAMs models describe ‘equivalog’ families, where both orthology and lateral gene transfer may be part of the evolutionary history, but where a single molecular function has been conserved. The Genome Properties system contains a queriable set of metabolic reconstructions, genome metrics and extractions of information from the scientific literature. Its genome-by-genome assertions of whether or not specific structures, pathways or systems are present provide high-level conceptual descriptions of genomic content. These assertions enable comparative genomics, provide a meaningful biological context to aid in manual annotation, support assignments of Gene Ontology (GO) biological process terms and help validate HMM-based predictions of protein function. The Genome Properties system is particularly useful as a generator of phylogenetic profiles, through which new protein family functions may be discovered. The TIGRFAMs and Genome Properties systems can be accessed at and

    Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901

    Get PDF
    We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a “minimal” model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously
    corecore