3,812 research outputs found
Thermodynamics and the Measure of Entanglement
We point out formal correspondences between thermodynamics and entanglement.
By applying them to previous work, we show that entropy of entanglement is the
unique measure of entanglement for pure states.Comment: 8 pages, RevTeX; edited for clarity, additional references, to appear
as a Rapid Communication in Phys. Rev.
A classical analogue of entanglement
We show that quantum entanglement has a very close classical analogue, namely
secret classical correlations. The fundamental analogy stems from the behavior
of quantum entanglement under local operations and classical communication and
the behavior of secret correlations under local operations and public
communication. A large number of derived analogies follow. In particular
teleportation is analogous to the one-time-pad, the concept of ``pure state''
exists in the classical domain, entanglement concentration and dilution are
essentially classical secrecy protocols, and single copy entanglement
manipulations have such a close classical analog that the majorization results
are reproduced in the classical setting. This analogy allows one to import
questions from the quantum domain into the classical one, and vice-versa,
helping to get a better understanding of both. Also, by identifying classical
aspects of quantum entanglement it allows one to identify those aspects of
entanglement which are uniquely quantum mechanical.Comment: 13 pages, references update
Quantum state restoration and single-copy tomography
Given a single copy of an n qubit quantum state |psi>, the no-cloning theorem
greatly limits the amount of information which can be extracted from it.
Moreover, given only a procedure which verifies the state, for example a
procedure which measures the operator |psi> in
time polynomial in n . In this paper, we consider the scenario in which we are
given both a single copy of |psi> and the ability to verify it. We show that in
this setting, we can do several novel things efficiently. We present a new
algorithm that we call quantum state restoration which allows us to extend a
large subsystem of |psi> to the full state, and in turn this allows us to copy
small subsystems of |psi>. In addition, we present algorithms that can perform
tomography on small subsystems of |psi>, and we show how to use these
algorithms to estimate the statistics of any efficiently implementable POVM
acting on |psi> in time polynomial in the number of outcomes of the POVM.Comment: edited for clarity; 13 pages, 1 figur
A Quantitative Measure of Interference
We introduce an interference measure which allows to quantify the amount of
interference present in any physical process that maps an initial density
matrix to a final density matrix. In particular, the interference measure
enables one to monitor the amount of interference generated in each step of a
quantum algorithm. We show that a Hadamard gate acting on a single qubit is a
basic building block for interference generation and realizes one bit of
interference, an ``i-bit''. We use the interference measure to quantify
interference for various examples, including Grover's search algorithm and
Shor's factorization algorithm. We distinguish between ``potentially
available'' and ``actually used'' interference, and show that for both
algorithms the potentially available interference is exponentially large.
However, the amount of interference actually used in Grover's algorithm is only
about 3 i-bits and asymptotically independent of the number of qubits, while
Shor's algorithm indeed uses an exponential amount of interference.Comment: 13 pages of latex; research done at http://www.quantware.ups-tlse.fr
Perfect Quantum Privacy Implies Nonlocality
Private states are those quantum states from which a perfectly secure
cryptographic key can be extracted. They represent the basic unit of quantum
privacy. In this work we show that all states belonging to this class violate a
Bell inequality. This result establishes a connection between perfect privacy
and nonlocality in the quantum domain.Comment: 4 pages, published versio
GHZ extraction yield for multipartite stabilizer states
Let be an arbitrary stabilizer state distributed between three
remote parties, such that each party holds several qubits. Let be a
stabilizer group of . We show that can be converted by local
unitaries into a collection of singlets, GHZ states, and local one-qubit
states. The numbers of singlets and GHZs are determined by dimensions of
certain subgroups of . For an arbitrary number of parties we find a
formula for the maximal number of -partite GHZ states that can be extracted
from by local unitaries. A connection with earlier introduced measures
of multipartite correlations is made. An example of an undecomposable
four-party stabilizer state with more than one qubit per party is given. These
results are derived from a general theoretical framework that allows one to
study interconversion of multipartite stabilizer states by local Clifford group
operators. As a simple application, we study three-party entanglement in
two-dimensional lattice models that can be exactly solved by the stabilizer
formalism.Comment: 12 pages, 1 figur
A Taxonomy of Phishing: Attack Types Spanning Economic, Temporal, Breadth, and Target Boundaries
Phishing remains a pernicious problem for organizations. Phishing attacks are increasing in sophistication, which hinders the ability of cybersecurity functions to effectively defend against them. These attacks are becoming increasingly complex, dynamic, and multifaceted to evade the organizational, individual, and technical countermeasures employed in a cybersecurity ecosystem. Information security (ISec) phishing research and practice have provided an understanding of generalized phishing attacks and their subsequent defense. Yet by applying generalized phishing rules to these studies, it may not be sufficient to understand and defend escalated forms of phishing. This study seeks to develop a taxonomy of phishing to provide a more nuanced understanding of this phenomena. This taxonomy may assist ISec research in providing theoretical guidance for the understanding and defense of the various forms of phishing
Practical private database queries based on a quantum key distribution protocol
Private queries allow a user Alice to learn an element of a database held by
a provider Bob without revealing which element she was interested in, while
limiting her information about the other elements. We propose to implement
private queries based on a quantum key distribution protocol, with changes only
in the classical post-processing of the key. This approach makes our scheme
both easy to implement and loss-tolerant. While unconditionally secure private
queries are known to be impossible, we argue that an interesting degree of
security can be achieved, relying on fundamental physical principles instead of
unverifiable security assumptions in order to protect both user and database.
We think that there is scope for such practical private queries to become
another remarkable application of quantum information in the footsteps of
quantum key distribution.Comment: 7 pages, 2 figures, new and improved version, clarified claims,
expanded security discussio
- âŠ