18 research outputs found

    Effect of helium pre- or postconditioning on signal transduction kinases in patients undergoing coronary artery bypass graft surgery

    Get PDF
    Background: The noble gas helium induces pre- and postconditioning in animals and humans. Volatile anesthetics induce cardioprotection in humans undergoing coronary artery bypass graft (CABG) surgery. We hypothesized that helium induces pre-and postconditioning in CABG-patients, affecting signaling molecules protein kinase C-epsilon (PKC-epsilon), p38 mitogen activated protein kinase (p38 MAPK), extracellular signal-regulated kinase 1/2 (ERK-1/2) and heat shock protein 27 (HSP-27) within cardiac tissue, and reducing postoperative troponin levels. Methods: After ethical approval and informed consent, 125 elective patients undergoing CABG surgery were randomised into this prospective, placebo controlled, investigator blinded, parallel arm single-centre study. Helium preconditioning (3 x 5 min of 70 % helium and 30 % oxygen) was applied before aortic cross clamping; postconditioning (15 min of helium) was applied before release of the aortic cross clamp. Signaling molecules were measured in right atrial appendix specimens. Troponin-T was measured at 4, 12, 24 and 48 h postoperatively. Results: Baseline characteristics of all groups were similar. Helium preconditioning did not significantly alter the primary outcome (molecular levels of kinases PKC-e and HSP-27, ratio of activated p38 MAPK or ERK 1/2). Postoperative troponin T was 11 arbitrary units [5, 31; area-under-the-curve (interquartile range)] for controls, and no statistically significant changes were observed after helium preconditioning [He-pre: 11 (6, 18)], helium postconditioning [He-post: 11 (8, 15)], helium pre-and postconditioning [He-PP: 14 (6, 20)] and after sevoflurane preconditioning [APC: 12 (8, 24), p = 0.13]. No adverse effects related to study treatment were observed in this study. Conclusions: No effect was observed of helium preconditioning, postconditioning or the combination thereof on activation of p38 MAPK, ERK 1/2 or levels of HSP27 and PKC-e in the human heart. Helium pre-and postconditioning did not affect postoperative troponin release in patients undergoing CABG surgery

    Helium ventilation for treatment of post-cardiac arrest syndrome:A safety and feasibility study

    Get PDF
    AbstractAimBesides supportive care, the only recommended treatment for comatose patients after cardiac arrest is target temperature management. Helium reduces ischaemic injury in animal models, and might ameliorate neurological injury in patients after cardiac arrest. As no studies exist on the use of helium in patients after cardiac arrest we investigated whether this is safe and feasible.MethodsThe study was an open-label single arm intervention study in a mixed-bed academic intensive care unit. We included 25 patients admitted after circulatory arrest, with a presenting rhythm of ventricular fibrillation or pulseless tachycardia, return of spontaneous circulation within 30min and who were treated with hypothermia. Helium was administrated in a 1:1 mix with oxygen for 3h. A safety committee reviewed all ventilation problems, complications and causes of mortality.ResultsHelium ventilation was started 4:59±0:52 (mean±SD)h after circulatory arrest. In one patient, helium ventilation was discontinued prematurely due to oxygenation problems. This was caused by pre-existing pulmonary oedema, and imposed limitations to PEEP and FiO2 by the study protocol, rather than the use of helium ventilation. Sixteen (64%) patients had a favourable neurological outcome.ConclusionsWe found that helium ventilation is feasible and can be used safely in patients treated with hypothermia after cardiac arrest. No adverse events related to the use of helium occurred during the three hours of administration

    Effect of remote ischemic conditioning on atrial fibrillation and outcome after coronary artery bypass grafting (RICO-trial)

    Get PDF
    Background: Pre- and postconditioning describe mechanisms whereby short ischemic periods protect an organ against a longer period of ischemia. Interestingly, short ischemic periods of a limb, in itself harmless, may increase the ischemia tolerance of remote organs, e.g. the heart (remote conditioning, RC). Although several studies have shown reduced biomarker release by RC, a reduction of complications and improvement of patient outcome still has to be demonstrated. Atrial fibrillation (AF) is one of the most common complications after coronary artery bypass graft surgery (CABG), affecting 27-46% of patients. It is associated with increased mortality, adverse cardiovascular events, and prolonged in-hospital stay. We hypothesize that remote ischemic pre- and/or post-conditioning reduce the incidence of AF following CABG, and improve patient outcome.Methods/design: This study is a randomized, controlled, patient and investigator blinded multicenter trial. Elective CABG patients are randomized to one of the following four groups: 1) control, 2) remote ischemic preconditioning, 3) remote ischemic postconditioning, or 4) remote ischemic pre- and postconditioning. Remote conditio

    Overview of included studies.

    No full text
    *<p>abdominal aortic aneurysm; <sup>†</sup>coronary artery bypass grafting; <sup>‡</sup>percutaneous coronary intervention; <sup>§</sup>left ventricular ejection fraction; <sup>||</sup>major adverse cardiovascular event; <sup>#</sup>aortic valve replacement; **ventricular septal defect.</p

    Peak troponin release with remote ischemic conditioning and without remote ischemic conditioning in the CABG-surgery sub-group.

    No full text
    <p>Peak troponin release with remote ischemic conditioning and without remote ischemic conditioning in the CABG-surgery sub-group.</p

    Effects of helium and air inhalation on the innate and early adaptive immune system in healthy volunteers <it>ex vivo</it>

    No full text
    Abstract Background Helium inhalation protects myocardium, brain and endothelium against ischemia/reperfusion injury in animals and humans, when applied according to specific “conditioning” protocols. Before widespread use of this “conditioning” agent in clinical practice, negative side effects have to be ruled out. We investigated the effect of prolonged helium inhalation on the responsiveness of the human immune response in whole blood ex vivo. Methods Male healthy volunteers inhaled 30 minutes heliox (79%He/21%O2) or air in a cross over design, with two weeks between measurements. Blood was withdrawn at T0 (baseline), T1 (25 min inhalation) and T2-T5 (1, 2, 6, 24 h after inhalation) and incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), T-cell stimuli anti-CD3/ anti-CD28 (TCS) or RPMI (as control) for 2, 4 and 24 hours or not incubated (0 h). An additional group of six volunteers inhaled 60 minutes of heliox or air, followed by blood incubation with LPS and RPMI. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interferon-γ (IFN-γ) and interleukin-2 (IL-2) was analyzed by cytometric bead array. Statistical analysis was performed by the Wilcoxon test for matched samples. Results Incubation with LPS, LTA or TCS significantly increased TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to incubation with RPMI alone. Thirty min of helium inhalation did not influence the amounts of TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to air. Sixty min of helium inhalation did not affect cytokine production after LPS stimulation. Conclusions We conclude that 79% helium inhalation does not affect the responsiveness of the human immune system in healthy volunteers. Trial registration Dutch Trial Register: http://www.trialregister.nl/ NTR2152</p
    corecore