114 research outputs found

    Prediction of blood back spatter from a gunshot in bloodstain pattern analysis

    Get PDF
    A theoretical model for predicting and interpreting blood-spatter patterns resulting from a gunshot wound is proposed. The physical process generating a backward spatter of blood is linked to the Rayleigh-Taylor instability of blood accelerated toward the surrounding air, allowing the determination of the initial distribution of drop sizes and velocities. Then the motion of many drops in air is considered with governing equations accounting for gravity and air drag. Based on these equations, a numerical solution is obtained. It predicts the atomization process, the trajectories of the back-spatter drops of blood from the wound to the ground, the impact angle, and the impact Weber number on the ground, as well as the distribution and location of bloodstains and their shape and sizes. A parametric study is undertaken to predict patterns of backward blood spatter under realistic conditions corresponding to the experiments conducted in the present work. The results of the model are compared to the experimental data on back spatter generated by a gunshot impacting a blood-impregnated sponge

    Determining the region of origin of blood spatter patterns considering fluid dynamics and statistical uncertainties

    Get PDF
    Trajectory reconstruction in bloodstain pattern analysis is currently performed by assuming that blood drop trajectories are straight along directions inferred from stain inspection. Recently, several attempts have been made at reconstructing ballistic trajectories backwards, considering the effects of gravity and drag forces. Here, we propose a method to reconstruct the region of origin of impact blood spatter patterns that considers fluid dynamics and statistical uncertainties. The fluid dynamics relies on defining for each stain a range of physically possible trajectories, based on known physics of how drops deform, both in flight and upon slanted impact. Statistical uncertainties are estimated and propagated along the calculations, and a probabilistic approach is used to determine the region of origin as a volume most compatible with the backward trajectories. A publicly available data set of impact spatter patterns on a vertical wall with various impactor velocities and distances to target is used to test the model and evaluate its robustness, precision, and accuracy. Results show that the proposed method allows reconstruction of bloodletting events with distances between the wall and blood source larger than ∼1 m. The uncertainty of the method is determined, and its dependency on the distance between the blood source and the wall is characterized. Causes of error and uncertainty are discussed. The proposed method allows the consideration of stains indicating impact velocities that point downwards, which are typically not used for determining the height of the origin. Based on the proposed method, two practical recommendations on crime scene documentation are drawn

    Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities

    Get PDF
    This comparative review highlights the relationships between the disciplines of bloodstain pattern analysis (BPA) in forensics and that of fluid dynamics (FD) in the physical sciences. In both the BPA and FD communities, scientists study the motion and phase change of a liquid in contact with air, or with other liquids or solids. Five aspects of BPA related to FD are discussed: the physical forces driving the motion of blood as a fluid; the generation of the drops; their flight in the air; their impact on solid or liquid surfaces; and the production of stains. For each of these topics, the relevant literature from the BPA community and from the FD community is reviewed. Comments are provided on opportunities for joint BPA and FD research, and on the development of novel FD-based tools and methods for BPA. Also, the use of dimensionless numbers is proposed to inform BPA analyses

    Charts based on millions of fluid dynamics simulations provide a simple tool to estimate how far from its source a specific blood stain can be found

    Get PDF
    The bloodstain pattern analyst sometimes has to judge if a given stain could originate from a specific location. A wide range of values of the maximum distance that a blood drop can travel have been reported from experiments, ranging from less than one meter to more than 10 meter. Here we formulate the problem in a fluid dynamics and data mining framework. The fluid dynamics is solved with Newton’s classical equation of motion coupled with well-established models for the gravity and drag forces that bend the trajectories of drops. The parameters screened are the drop size, initial velocity and launch angle, as well as the height of a blood source and the ceiling height. Combining a wide range of values of those five parameter commended the performance of more than 5 million fluid dynamic simulations. Results of those simulations have been searched and mined for parameters directly measurable on a crime scene, such as the stain size and stain ellipticity. The results are presented in simple charts. Those charts are easy to use, and do not require any knowledge of fluid dynamics from the analyst

    Dropwise condensation on multiscale bioinspired metallic surfaces with nanofeatures

    Get PDF
    Non-wetting surfaces engineered from intrinsically hydrophilic metallic materials are promising for self-cleaning, anti-icing and/or condensation heat transfer applications where the durability of the coating is an issue. In this work, we fabricate and study the wetting behaviour and the condensation performance on two metallic non-wetting surfaces with varying number and size of the roughness tiers without further hydrophobic coating procedure. On one hand, the surface resembling a rose petal exhibits a sticky non-wetting behaviour as drops wet the microscopic roughness features with the consequent enhanced drop adhesion, which leads to filmwise condensation. On the other hand, the surface resembling a lotus leaf provides super-repellent non-wetting behaviour prompting the continuous nucleation, growth and departure of spherical drops in a dropwise condensation fashion. On a lotus leaf surface, the third nano-scale roughness tier (created by chemical oxidation) combined with ambience exposure prompts the growth of drops in the Cassie state with the benefit of minimal condensate adhesion. The two different condensation behaviours reported are well supported by a drop surface energy analysis, which accounts for the different wetting performance and the surface structure underneath the condensing drops. Further, we coated the above-mentioned surfaces with polydimethylsiloxane surfaces, which resulted in filmwise condensation due to the smoothening of the different roughness tiers. Continuous dropwise condensation on a hierarchical bioinspired lotus leaf metallic surface without the need for a conformal hydrophobic coating is hence demonstrated, which offers a novel path for the design and manufacture of non-coated metallic super-repellent surfaces for condensation phase change applications, amongst others
    • …
    corecore