22 research outputs found

    Detection of Rotational Spectral Variation on the M-type asteroid (16) Psyche

    Get PDF
    The asteroid (16) Psyche is of scientific interest because it contains ~ 1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7-2.5 microns) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ~ 0.92 to 0.94 microns. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs30En65Wo5. Variations in the band depth were also observed, with values ranging from 1.0 to 1.5%. Using a new laboratory spectral calibration we estimated an average orthopyroxene content of 6+/-1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for spectral slope and the minimum band depth. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.Comment: 21 pages, 8 figures, 2 tables, published in The Astronomical Journa

    Natural Analogue Constraints on Europa's Non-ice surface Material

    Get PDF
    Non-icy material on the surface of Jupiter’s moon Europa is hypothesised to have originated from its subsurface ocean, and thus provide a record of ocean composition and habitability. The nature of this material is debated, but observations suggest that it comprises hydrated sulfate and chloride salts. Analogue spectroscopic studies have previously focused on single phase salts under controlled laboratory conditions. We investigated natural salts from perennially cold (<0 °C) hypersaline springs, and characterised their reflectance properties at 100 K, 253 K and 293 K. Despite similar major ion chemistry, these springs form mineralogically diverse deposits, which when measured at 100 K closely match reflectance spectra from Europa. In the most sulfate-rich samples, we find spectral features predicted from laboratory salts are obscured. Our data are consistent with sulfate-dominated europan non-icy material, and further, show that the emplacement of endogenic sulfates on Europa’s surface would not preclude a chloride-dominated ocean

    Mobility of arsenic and vanadium in waterlogged calcareous soils due to addition of zeolite and manganese oxide amendments

    Get PDF
    Addition of manganese(IV) oxides (MnO2) and zeolite can affect the mobility of As and V in soils due to geochemical changes that have not been studied well in calcareous, flooded soils. This study evaluated the mobility of As and V in flooded soils surface-amended with MnO2 or zeolite. A simulated summer flooding study was conducted for 8 weeks using intact soil columns from four calcareous soils. Redox potential was measured in soils, whereas pH, major cations, and As and V concentrations were measured biweekly in pore water and floodwater. Aqueous As and V species were modeled at 0, 4, and 8 weeks after flooding (WAF) using Visual MINTEQ modeling software with input parameters of redox potential, temperature, pH, total alkalinity, and concentrations of major cations and anions. Aqueous As concentrations were below the critical thresholds (<100 μg L−1), whereas aqueous V concentrations exceeded the threshold for sensitive aquatic species (2–80 μg L−1). MnO2-amended soils were reduced to sub-oxic levels, whereas zeolite-amended and unamended soils were reduced to anoxic levels by 8 WAF. MnO2 decreased As and V mobilities, whereas zeolite had no effect on As but increased V mobility, compared to unamended soils. Arsenic mobility increased under anoxic conditions, and V mobility increased under oxic and alkaline pH conditions. Conversion of As(V) to As(III) and V(V) to V(IV) was regulated by MnO2 in flooded soils. MnO2 can be used as an amendment in immobilizing As and V, whereas the use of zeolite in flooded calcareous soils should be done cautiously."This research was financially supported by Environment and Climate Change Canada through Lake Winnipeg Basin Program, University of Winnipeg Major Grant and Canadian Queen Elizabeth II Diamond Jubilee Scholarships: Advanced Scholars program."https://acsess.onlinelibrary.wiley.com/doi/10.1002/jeq2.2045

    Detection of rotational spectral variation on the M-type asteroid (16) Psyche

    Get PDF
    The asteroid (16) Psyche is of scientific interest because it contains ∼1% of the total mass of the asteroid belt and is thought to be the remnant metallic core of a protoplanet. Radar observations have indicated the significant presence of metal on the surface with a small percentage of silicates. Prior ground-based observations showed rotational variations in the near-infrared (NIR) spectra and radar albedo of this asteroid. However, no comprehensive study that combines multi-wavelength data has been conducted so far. Here we present rotationally resolved NIR spectra (0.7–2.5 μm) of (16) Psyche obtained with the NASA Infrared Telescope Facility. These data have been combined with shape models of the asteroid for each rotation phase. Spectral band parameters extracted from the NIR spectra show that the pyroxene band center varies from ∼0.92 to 0.94 μm. Band center values were used to calculate the pyroxene chemistry of the asteroid, whose average value was found to be Fs30En65Wo5. Variations in the band depth (BD) were also observed, with values ranging from 1.0% to 1.5%. Using a new laboratory spectral calibration method, we estimated an average orthopyroxene content of 6% ± 1%. The mass-deficit region of Psyche, which exhibits the highest radar albedo, also shows the highest value for the spectral slope and the minimum BD. The spectral characteristics of Psyche suggest that its parent body did not have the typical structure expected for a differentiated body or that the sequence of events that led to its current state was more complex than previously thought.This research work was supported by NASA Planetary Mission Data Analysis Program Grant NNX13AP27G, NASA NEOO Program Grant NNX12AG12G, and NASA Planetary Geology and Geophysics Program Grant NNX11AN84G… The Arecibo Planetary Radar Program is supported by the National Aeronautics and Space Administration under Grant Nos. NNX12AF24G and NNX13AQ46G, issued through the Near Earth Object Observations program. E.A.C. thanks the Canada Foundation for Innovation, the Manitoba Research Innovations Fund, the Canadian Space Agency, the Natural Sciences and Engineering Research Council of Canada, and the University of Winnipeg for supporting the establishment and ongoing operation of the University of Winnipeg’s Planetary Spectrophotometer Facility.http://iopscience.iop.org/article/10.3847/1538-3881/153/1/29/met

    Spectral reflectance (0.35-2.5 mu m) properties of garnets: Implications for remote sensing detection and characterization

    No full text
    The utility of spectral reflectance for identification of the main end-member garnets: almandine (Fe32+Al2Si3O12), andradite (Ca3Fe23+Si3O12), grossuiar (Ca3Al2Si3O12), pyrope (Mg3Al2Si3O12), spessartine (Mn32+Al2Si3O12), and uvarovite (Ca3Cr23+Si3O12) was studied using a suite of 60 garnet samples. Compositional and structural data for the samples, along with previous studies, were used to elucidate the mechanisms that control their spectral reflectance properties. Various cation substitutions result in different spectral properties that can be determine the presence of various optically-active cations and help differentiate between garnet types. It was found that different wavelength regions are sensitive to different compositional and structural properties of garnets. Crystal-field absorptions involving Fe2+ and/or Fe3+ are responsible for the majority of spectral features in the garnet minerals examined here. There can also be spectral features associated with other cations and mechanisms, such as Fe2+-Fe3+ and Fe2+-Ti4+ intervalence charge transfers. The visible wavelength region is useful for identifying the presence of various cations, in particular, Fe (and its oxidation state), Ti4+, Mn2+, and Cr3+. In the case of andradite, spessartine and uvarovite, the visible region absorption bands are characteristic of these garnets in the sense that they are associated with the major cation that distinguishes each: Fe-[6](3+) for andradite, Mn-[8](2+) for spessartine, and Cr-[6](3+) for uvarovite. For grossuiar, the presence of small amounts of Fe3+ leads to absorption bands near 0.370 and 0.435 mu m. These bands are also seen in pyrope-almandine spectra, which also commonly have additional absorption bands, due to the presence of Fe2+. The common presence of Fe2+ in the dodecahedral site of natural garnets gives rise to three Fe2+ spin-allowed absorption bands in the 1.3,1.7, and 2.3 mu m regions, providing a strong spectral fingerprint for all Fe2+-bearing garnets studied here. Garnets containing Mn2+ have additional visible (similar to 0.41 mu m ) spectral features due to Mn-[8](2+). Garnets containing Cr3+, exhibits two strong absorption bands near similar to 0.7 mu m due to spin-forbidden Cr-[6](3+) transitions, as well as Cr-[6](3+) spin-allowed features near 0.4-0.41 mu m and 0.56-0.62 mu m, and( [6])Cr(3+) spin-allowed transitions between 0.41 and 0.68 mu m. Common silicate garnet spectra, in summary, are distinct from many other rock-forming silicates and can be spectrally distinct from one garnet species to another. Iron dominates the spectral properties of garnets, and the crystallographic site and oxidation state of the iron both affect garnet reflectance spectra
    corecore