33 research outputs found

    Equilibrium segregation to terraces and steps

    No full text

    Silver Makes Better Electrical Contacts to Thiol-Terminated Silanes than Gold

    No full text
    We report that the single-molecule junction conductance of thiol-terminated silanes with Ag electrodes are higher than the conductance of those formed with Au electrodes. These results are in contrast to the trends in the metal work function Phi(Ag)< Phi(Au). As such, a better alignment of the Au Fermi level to the molecular orbital of silane that mediates charge transport would be expected. This conductance trend is reversed when we replace the thiols with amines, highlighting the impact of metal-S covalent and metal-NH2 dative bonds in controlling the molecular conductance. Density functional theory calculations elucidate the crucial role of the chemical linkers in determining the level alignment when molecules are attached to different metal contacts. We also demonstrate that conductance of thiol-terminated silanes with Pt electrodes is lower than the ones formed with Au and Ag electrodes, again in contrast to the trends in the metal work-functions

    In Situ Formation of N鈥慔eterocyclic Carbene-Bound Single-Molecule Junctions

    No full text
    Self-assembled monolayers (SAMs) formed using N-heterocyclic carbenes (NHCs) have recently emerged as thermally and chemically ultrastable alternatives to those formed from thiols. The rich chemistry and strong 蟽-donating ability of NHCs offer unique prospects for applications in nanoelectronics, sensing, and electrochemistry. Although stable in SAMs, free carbenes are notoriously reactive, making their electronic characterization challenging. Here we report the first investigation of electron transport across single NHC-bound molecules using the scanning tunneling microscope-based break junction (STM-BJ) technique. We develop a series of air-stable metal NHC complexes that can be electrochemically reduced in situ to form NHC鈥揺lectrode contacts, enabling reliable single-molecule conductance measurements of NHCs under ambient conditions. Using this approach, we show that the conductance of an NHC depends on the identity of the single metal atom to which it is coordinated in the junction. Our observations are supported by density functional theory (DFT) calculations, which also firmly establish the contributions of the NHC linker to the junction transport characteristics. Our work demonstrates a powerful method to probe electron transfer across NHC鈥揺lectrode interfaces; more generally, it opens the door to the exploitation of surface-bound NHCs in constructing novel, functionalized electrodes and/or nanoelectronic devices

    In Situ Formation of N鈥慔eterocyclic Carbene-Bound Single-Molecule Junctions

    No full text
    Self-assembled monolayers (SAMs) formed using N-heterocyclic carbenes (NHCs) have recently emerged as thermally and chemically ultrastable alternatives to those formed from thiols. The rich chemistry and strong 蟽-donating ability of NHCs offer unique prospects for applications in nanoelectronics, sensing, and electrochemistry. Although stable in SAMs, free carbenes are notoriously reactive, making their electronic characterization challenging. Here we report the first investigation of electron transport across single NHC-bound molecules using the scanning tunneling microscope-based break junction (STM-BJ) technique. We develop a series of air-stable metal NHC complexes that can be electrochemically reduced in situ to form NHC鈥揺lectrode contacts, enabling reliable single-molecule conductance measurements of NHCs under ambient conditions. Using this approach, we show that the conductance of an NHC depends on the identity of the single metal atom to which it is coordinated in the junction. Our observations are supported by density functional theory (DFT) calculations, which also firmly establish the contributions of the NHC linker to the junction transport characteristics. Our work demonstrates a powerful method to probe electron transfer across NHC鈥揺lectrode interfaces; more generally, it opens the door to the exploitation of surface-bound NHCs in constructing novel, functionalized electrodes and/or nanoelectronic devices

    In Situ Formation of N鈥慔eterocyclic Carbene-Bound Single-Molecule Junctions

    No full text
    Self-assembled monolayers (SAMs) formed using N-heterocyclic carbenes (NHCs) have recently emerged as thermally and chemically ultrastable alternatives to those formed from thiols. The rich chemistry and strong 蟽-donating ability of NHCs offer unique prospects for applications in nanoelectronics, sensing, and electrochemistry. Although stable in SAMs, free carbenes are notoriously reactive, making their electronic characterization challenging. Here we report the first investigation of electron transport across single NHC-bound molecules using the scanning tunneling microscope-based break junction (STM-BJ) technique. We develop a series of air-stable metal NHC complexes that can be electrochemically reduced in situ to form NHC鈥揺lectrode contacts, enabling reliable single-molecule conductance measurements of NHCs under ambient conditions. Using this approach, we show that the conductance of an NHC depends on the identity of the single metal atom to which it is coordinated in the junction. Our observations are supported by density functional theory (DFT) calculations, which also firmly establish the contributions of the NHC linker to the junction transport characteristics. Our work demonstrates a powerful method to probe electron transfer across NHC鈥揺lectrode interfaces; more generally, it opens the door to the exploitation of surface-bound NHCs in constructing novel, functionalized electrodes and/or nanoelectronic devices

    In Situ Formation of N鈥慔eterocyclic Carbene-Bound Single-Molecule Junctions

    No full text
    Self-assembled monolayers (SAMs) formed using N-heterocyclic carbenes (NHCs) have recently emerged as thermally and chemically ultrastable alternatives to those formed from thiols. The rich chemistry and strong 蟽-donating ability of NHCs offer unique prospects for applications in nanoelectronics, sensing, and electrochemistry. Although stable in SAMs, free carbenes are notoriously reactive, making their electronic characterization challenging. Here we report the first investigation of electron transport across single NHC-bound molecules using the scanning tunneling microscope-based break junction (STM-BJ) technique. We develop a series of air-stable metal NHC complexes that can be electrochemically reduced in situ to form NHC鈥揺lectrode contacts, enabling reliable single-molecule conductance measurements of NHCs under ambient conditions. Using this approach, we show that the conductance of an NHC depends on the identity of the single metal atom to which it is coordinated in the junction. Our observations are supported by density functional theory (DFT) calculations, which also firmly establish the contributions of the NHC linker to the junction transport characteristics. Our work demonstrates a powerful method to probe electron transfer across NHC鈥揺lectrode interfaces; more generally, it opens the door to the exploitation of surface-bound NHCs in constructing novel, functionalized electrodes and/or nanoelectronic devices

    In Situ Formation of N鈥慔eterocyclic Carbene-Bound Single-Molecule Junctions

    No full text
    Self-assembled monolayers (SAMs) formed using N-heterocyclic carbenes (NHCs) have recently emerged as thermally and chemically ultrastable alternatives to those formed from thiols. The rich chemistry and strong 蟽-donating ability of NHCs offer unique prospects for applications in nanoelectronics, sensing, and electrochemistry. Although stable in SAMs, free carbenes are notoriously reactive, making their electronic characterization challenging. Here we report the first investigation of electron transport across single NHC-bound molecules using the scanning tunneling microscope-based break junction (STM-BJ) technique. We develop a series of air-stable metal NHC complexes that can be electrochemically reduced in situ to form NHC鈥揺lectrode contacts, enabling reliable single-molecule conductance measurements of NHCs under ambient conditions. Using this approach, we show that the conductance of an NHC depends on the identity of the single metal atom to which it is coordinated in the junction. Our observations are supported by density functional theory (DFT) calculations, which also firmly establish the contributions of the NHC linker to the junction transport characteristics. Our work demonstrates a powerful method to probe electron transfer across NHC鈥揺lectrode interfaces; more generally, it opens the door to the exploitation of surface-bound NHCs in constructing novel, functionalized electrodes and/or nanoelectronic devices
    corecore