3,991 research outputs found

    Approximate transformations and robust manipulation of bipartite pure state entanglement

    Get PDF
    We analyze approximate transformations of pure entangled quantum states by local operations and classical communication, finding explicit conversion strategies which optimize the fidelity of transformation. These results allow us to determine the most faithful teleportation strategy via an initially shared partially entangled pure state. They also show that procedures for entanglement manipulation such as entanglement catalysis [Jonathan and Plenio, Phys. Rev. Lett. 83, 3566 (1999)] are robust against perturbation of the states involved, and motivate the notion of non-local fidelity, which quantifies the difference in the entangled properties of two quantum states.Comment: 11 pages, 4 figure

    On the Optimality of Quantum Encryption Schemes

    Full text link
    It is well known that n bits of entropy are necessary and sufficient to perfectly encrypt n bits (one-time pad). Even if we allow the encryption to be approximate, the amount of entropy needed doesn't asymptotically change. However, this is not the case when we are encrypting quantum bits. For the perfect encryption of n quantum bits, 2n bits of entropy are necessary and sufficient (quantum one-time pad), but for approximate encryption one asymptotically needs only n bits of entropy. In this paper, we provide the optimal trade-off between the approximation measure epsilon and the amount of classical entropy used in the encryption of single quantum bits. Then, we consider n-qubit encryption schemes which are a composition of independent single-qubit ones and provide the optimal schemes both in the 2- and the operator-norm. Moreover, we provide a counterexample to show that the encryption scheme of Ambainis-Smith based on small-bias sets does not work in the operator-norm.Comment: 15 page

    Emergence and Adult Biology of \u3ci\u3eAgrilus Difficilis\u3c/i\u3e (Coleoptera: Buprestidae), a Pest of Honeylocust, \u3ci\u3eGleditsia Triacanthos\u3c/i\u3e

    Get PDF
    Emergence and adult biology of Agrilus difficilis were examined in relation to its host Gleditsia triacanthos. began as early as 5 June in 1982 and completed as late as 22 July in 1983. Females lived significantly longer, 48 days, than males, 29 days. Average fecundity was one egg per day during a 36-day oviposition period

    Vanishing quantum discord is necessary and sufficient for completely positive maps

    Full text link
    Two long standing open problems in quantum theory are to characterize the class of initial system-bath states for which quantum dynamics is equivalent to (1) a map between the initial and final system states, and (2) a completely positive (CP) map. The CP map problem is especially important, due to the widespread use of such maps in quantum information processing and open quantum systems theory. Here we settle both these questions by showing that the answer to the first is "all", with the resulting map being Hermitian, and that the answer to the second is that CP maps arise exclusively from the class of separable states with vanishing quantum discord.Comment: 4 pages, no figures. v2: Accepted for publication in Phys. Rev. Let

    Robust Quantum Error Correction via Convex Optimization

    Full text link
    We present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity. We illustrate our theory numerically for optimized 5-qubit codes, using the standard [5,1,3] code as a benchmark. Our optimized encoding and recovery yields fidelities that are uniformly higher by 1-2 orders of magnitude against random unitary weight-2 errors compared to the [5,1,3] code with standard recovery. We observe similar improvement for a 4-qubit decoherence-free subspace code.Comment: 4 pages, including 3 figures. v2: new example

    From qubits to black holes: entropy, entanglement and all that

    Full text link
    Entropy plays a crucial role in characterization of information and entanglement, but it is not a scalar quantity and for many systems it is different for different relativistic observers. Loop quantum gravity predicts the Bekenstein-Hawking term for black hole entropy and logarithmic correction to it. The latter originates in the entanglement between the pieces of spin networks that describe black hole horizon. Entanglement between gravity and matter may restore the unitarity in the black hole evaporation process. If the collapsing matter is assumed to be initially in a pure state, then entropy of the Hawking radiation is exactly the created entanglement between matter and gravity.Comment: Honorable Mention in the 2005 Gravity Research Foundation Essay Competitio

    The Groverian Measure of Entanglement for Mixed States

    Full text link
    The Groverian entanglement measure introduced earlier for pure quantum states [O. Biham, M.A. Nielsen and T. Osborne, Phys. Rev. A 65, 062312 (2002)] is generalized to the case of mixed states, in a way that maintains its operational interpretation. The Groverian measure of a mixed state of n qubits is obtained by a purification procedure into a pure state of 2n qubits, followed by an optimization process based on Uhlmann's theorem, before the resulting state is fed into Grover's search algorithm. The Groverian measure, expressed in terms of the maximal success probability of the algorithm, provides an operational measure of entanglement of both pure and mixed quantum states of multiple qubits. These results may provide further insight into the role of entanglement in making quantum algorithms powerful.Comment: 6 pages, 2 figure

    Exchange-based CNOT gates for singlet-triplet qubits with spin orbit interaction

    Full text link
    We propose a scheme for implementing the CNOT gate over qubits encoded in a pair of electron spins in a double quantum dot. The scheme is based on exchange and spin orbit interactions and on local gradients in Zeeman fields. We find that the optimal device geometry for this implementation involves effective magnetic fields that are parallel to the symmetry axis of the spin orbit interaction. We show that the switching times for the CNOT gate can be as fast as a few nanoseconds for realistic parameter values in GaAs semiconductors. Guided by recent advances in surface codes, we also consider the perpendicular geometry. In this case, leakage errors due to spin orbit interaction occur but can be suppressed in strong magnetic fields

    Exchange-controlled single-electron-spin rotations in quantum dots

    Full text link
    We show theoretically that arbitrary coherent rotations can be performed quickly (with a gating time ~1 ns) and with high fidelity on the spin of a single confined electron using control of exchange only, without the need for spin-orbit coupling or ac fields. We expect that implementations of this scheme would achieve gate error rates on the order of \eta ~ 10^{-3} in GaAs quantum dots, within reach of several known error-correction protocolsComment: 4+ pages, 3 figures; v2: Streamlined presentation, final version published in PRB (Rapid Comm.
    • …
    corecore