4,342 research outputs found

    Threshold resummation for the prompt-photon cross section revisited

    Get PDF
    We study the resummation of large logarithmic perturbative corrections to the partonic cross sections relevant for the process pp->gamma X at high transverse momentum of the photon.These corrections arise near the threshold for the partonic reaction and are associated with soft-gluon emission. We especially focus on the resummation effects for the contribution to the cross section where the photon is produced in jet fragmentation. Previous calculations in perturbation theory at fixed-order have established that this contribution is a subdominant part of the cross section. We find, however, that it is subject to much larger resummation effects than the direct (non-fragmentation) piece and therefore appears to be a significant contribution in the fixed-target regime, not much suppressed with respect to the direct part. Inclusion of threshold resummation for the fragmentation piece leads to some improvement in comparisons between theoretical calculations and experimental data.Comment: 12 pages, 5 figure

    Randomized Comparison of 64-Slice Single- and Dual-Source Computed Tomography Coronary Angiography for the Detection of Coronary Artery Disease

    Get PDF
    ObjectivesThe purpose of this study was to analyze the influence of a systematic approach to lower heart rate for coronary computed tomography (CT) angiography on diagnostic accuracy of 64-slice single- and dual-source CT.BackgroundCoronary CT angiography is often impaired by motion artifacts, so that routine lowering of heart rate is usually recommended. This is often conceived as a major limitation of the technique. It is expected that higher temporal resolution, such as with dual-source 64-slice CT, would allow diagnostic imaging even without systematic pre-treatment for lowering the heart rate.MethodsTwo hundred patients with suspected coronary artery disease were first randomized to either 64-slice single-source CT (n = 100) or dual-source CT (n = 100) for contrast-enhanced coronary artery evaluation. In each group, patients were further randomized to either receive systematic heart rate control (oral and intravenous beta-blockade for a target heart rate ≤60 beats/min) or receive no premedication. Evaluability of datasets and diagnostic accuracy were compared between groups against the results obtained from invasive angiography.ResultsSystematic pre-treatment lowered heart rate during CT coronary angiography by 10 beats/min. Heart rate control significantly improved evaluability in single-source CT (93% vs. 69% on a per-patient basis, p = 0.005), whereas it did not in dual-source CT (96% vs. 98%). In evaluable patients, sensitivity to detect the presence of at least 1 coronary stenosis by single-source CT was 86% and 79%, respectively, with and without heart rate control (p = NS). For dual-source CT, it was 100% and 95%, respectively (p = NS). The rate of correctly classified patients, defined as evaluable and correct classification as to the presence or absence of at least 1 coronary artery stenosis, was significantly improved by heart rate control in single-source CT (78% vs. 57%, p = 0.04), whereas there was no such influence in dual-source CT (87% vs. 93%).ConclusionsSystematic heart rate control significantly improves image quality for coronary visualization by 64-slice single-source CT, whereas image quality and diagnostic accuracy remain unaffected in dual-source CT angiography. Improved temporal resolution obviates the need for heart rate control

    Adolescents' preference for later school start times

    Full text link
    As the chronotype delays progressively throughout puberty, early morning school start times (SSTs) contradict the sleep biology of adolescents. Various studies have demonstrated beneficial effects of later SSTs on sleep and health; however, adolescents' preferences for SSTs have to date never been investigated in detail. The present online survey study aimed to fill this gap and explored influencing factors. A total of 17 high schools in the Canton of Zurich, Switzerland, circulated the survey among their students. Participants were included if they reported their sex, age, and school (n = 5,308). Students indicated whether they preferred later SSTs. Additionally, five predictor blocks were assessed: sociodemographic, school-related, sleep, leisure-time, and health-related characteristics. We applied multivariate logistic regression models with fixed and random effects to predict the preference. The mean (SD) age of the students was 16.09 (1.76) years (65.1% female). The majority (63.2%) endorsed later SSTs with a preferred delay of 55 min (interquartile range 25-75 min). In the multilevel analysis (n = 2,627), sex, mother tongue, sleep characteristics, mobile device use at bedtime, caffeine consumption, and health-related quality of life were significant predictors for the preference. Hence, the majority of adolescents preferred later SSTs, and especially those with sleep or health-related problems. These characteristics have been consistently shown to improve after delaying SSTs. Thus, also from adolescents' view, later SSTs should be considered to improve the adolescents' health

    Order out of Randomness : Self-Organization Processes in Astrophysics

    Full text link
    Self-organization is a property of dissipative nonlinear processes that are governed by an internal driver and a positive feedback mechanism, which creates regular geometric and/or temporal patterns and decreases the entropy, in contrast to random processes. Here we investigate for the first time a comprehensive number of 16 self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous {\sl order out of chaos}, during the evolution from an initially disordered system to an ordered stationary system, via quasi-periodic limit-cycle dynamics, harmonic mechanical resonances, or gyromagnetic resonances. The internal driver can be gravity, rotation, thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational instability, the Rayleigh-B\'enard convection instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or loss-cone instability. Physical models of astrophysical self-organization processes involve hydrodynamic, MHD, and N-body formulations of Lotka-Volterra equation systems.Comment: 61 pages, 38 Figure
    corecore