8 research outputs found

    Magnesium-Modified Co<sub>3</sub>O<sub>4</sub> Catalyst with Remarkable Performance for Toluene Low Temperature Deep Oxidation

    No full text
    Co3O4, MgCo2O4 and MgO materials have been synthesized using a simple co-precipitation approach and systematically characterized. The total conversion of toluene to CO2 and H2O over spinel MgCo2O4 with wormlike morphology has been investigated. Compared with single metal oxides (Co3O4 and MgO), MgCo2O4 with the highest activity has exhibited almost 100% oxidation of toluene at 255 °C. The obtained results are analogous to typical precious metal supported catalysts. The activation energy of toluene over MgCo2O4 (38.5 kJ/mol) is found to be much lower than that of Co3O4 (68.9 kJ/mol) and MgO ((87.8 kJ/mol)). Compared with the single Co and Mg metal oxide, the as-prepared spinel MgCo2O4 exhibits a larger surface area, highest absorbed oxygen and more oxygen vacancies, thus highest mobility of oxygen species due to its good redox capability. Furthermore, the samples specific surface area, low-temperature reducibility and surface adsorbed oxygenated species ratio decreased as follows: MgCo2O4 > Co3O4 > MgO; which is completely in line with the catalytic performance trends and constitute the reasons for MgCo2O4 high excellent activity towards toluene total oxidation. The overall finding supported by ab initio molecular dynamics simulations of toluene oxidation on the Co3O4 and MgCo2O4 suggest that the catalytic process follows a Mars–van Krevelen mechanism

    Phase 3 Evaluation of an Innovative Simple Molecular Test for the Diagnosis of Malaria and Follow-Up of Treatment Efficacy in Pregnant Women in Sub-Saharan Africa (Preg-Diagmal)

    No full text
    The malaria parasite Plasmodium falciparum (Pf) can sequester in the placenta resulting in low density of peripheral parasitemia and consequently in false negative malaria diagnosis (by microscopy) in pregnant women. Moreover, the use of rapid diagnostic tests (RDTs) in diagnostic strategies, including those for the detection of a malaria infection during pregnancy, is constrained by either persistent malaria antigen (histidine-rich protein 2; HRP2) after successful treatment, leading to false positive test results, or by false negative results as previously mentioned due to parasite sequestration (which is further exacerbated due to the low limited of detection [LoD] of conventional RDTs) or to HRP2 deletion. Recently, a direct blood polymerase chain reaction combined with a nucleic acid lateral flow immunoassay (dbPCR-NALFIA) has been developed, which circumvents these challenges and has demonstrated its diagnostic potential in phase 1 and 2 studies. The PREG-DIAGMAL trial presented in this manuscript will assess the diagnostic performance of dbPCR-NALFIA for the diagnostic of malaria in pregnant women and its potential to monitor treatment efficacy in these subjects. The work is ancillary embedded in an ongoing EDCTP funded trial, the PyraPreg project (PACTR202011812241529) in which the safety and efficacy of a newly registered Artemisinin-Based Combination (Pyronaridine-Artesunate) is being evaluated in pregnant women. This is a Phase 3 diagnostic evaluation conducted in 2 African countries: Democratic Republic of the Congo (DRC) and Burkina Faso. Pregnant women fulfilling the inclusion criteria of the PyraPreg study will be also invited to participate in the PREG-DIAGMAL study. Diagnostic accuracy will be assessed following the WHO/TDR guidelines for the evaluation of diagnostics and reported according to STARD principles. Due to the lack of a 100% specific and sensitive standard diagnostic test for malaria, the sensitivity and specificity of the new test will be compared to the available diagnostic practice in place at the selected settings (microscopy and/or RDT) and to quantitative PCR as the reference test. This phase 3 diagnostic study is designed towards the evaluation of the performance of a new diagnostic tool for the screening of malaria and the monitoring of treatment in pregnant women under real conditions life. If successful, the dbPCR-NALFIA could be a valuable tool to add to the diagnostic arsenal for malaria, in particular during pregnancy. Trial registration: Pan African Clinical Trial Registry database (PACTR202203780981413). Registered on 17 March 2022

    Identification of the PfK13 mutations R561H and P441L in Democratic Republic of Congo (DRC).

    No full text
    BACKGROUND: Partial artemisinin resistance, mediated by P. falciparum K13 (PfK13) mutations, has been confirmed in certain areas of East Africa which are historically associated with high-level antimalarial resistance. DRC borders these areas in the East. OBJECTIVES: To determine the prevalence of resistance markers in six national malaria control programme (NMCP) surveillance sites; Boende, Kabondo, Kapolowe, Kimpese, Mikalayi and Rutshuru. METHODS: The SNPs in P. falciparum genes PfK13, Pfdhfr, Pfdhps, Pfmdr1 and Pfcrt were assessed using targeted NGS of isolates collected at enrolment in therapeutic efficacy studies. RESULTS: PfK13 SNPs were detected in two samples; in Kabondo (R561H) and in Rutshuru (P441L), both areas near Uganda and Rwanda. The Pfdhps ISGEGA haplotype, associated with reduced SP chemoprevention efficacy, ranged from 0.8% in Mikalayi (central DRC) to 42.2% in Rutshuru (East DRC). CONCLUSIONS: R561H and P441L observed in eastern DRC are a concern, as they are associated with delayed ACT-clearance and candidate marker of resistance, respectively. This is consistent with previous observations of shared drug resistance profiles in parasites of that region with bordering areas of Rwanda and Uganda. The likely circulation of parasites has important implications for the ongoing surveillance of partial artemisinin-resistant P. falciparum and for future efforts to mitigate its dispersal

    Surface-Bound Soft Matter Gradients

    No full text
    corecore