75,078 research outputs found

    Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data

    Full text link
    The recent Nobel-prize-winning detections of gravitational waves from merging black holes and the subsequent detection of the collision of two neutron stars in coincidence with electromagnetic observations have inaugurated a new era of multimessenger astrophysics. To enhance the scope of this emergent field of science, we pioneered the use of deep learning with convolutional neural networks, that take time-series inputs, for rapid detection and characterization of gravitational wave signals. This approach, Deep Filtering, was initially demonstrated using simulated LIGO noise. In this article, we present the extension of Deep Filtering using real data from LIGO, for both detection and parameter estimation of gravitational waves from binary black hole mergers using continuous data streams from multiple LIGO detectors. We demonstrate for the first time that machine learning can detect and estimate the true parameters of real events observed by LIGO. Our results show that Deep Filtering achieves similar sensitivities and lower errors compared to matched-filtering while being far more computationally efficient and more resilient to glitches, allowing real-time processing of weak time-series signals in non-stationary non-Gaussian noise with minimal resources, and also enables the detection of new classes of gravitational wave sources that may go unnoticed with existing detection algorithms. This unified framework for data analysis is ideally suited to enable coincident detection campaigns of gravitational waves and their multimessenger counterparts in real-time.Comment: 6 pages, 7 figures; First application of deep learning to real LIGO events; Includes direct comparison against matched-filterin

    Gamma-Ray Burst Dust Echoes Revisited: Expectations at Early Times

    Get PDF
    Gamma-ray burst (GRB) dust echoes were first proposed as an alternative explanation for the supernova-like (SN-like) components to the afterglows of GRB 980326 and GRB 970228. However, the spectroscopic identification of Type Ic SN 2003dh associated with GRB 030329, as well as the identification of SN-like components to the afterglows of other GRBs, appears to have confirmed the GRB/SN paradigm. However, the likely progenitors of Type Ic SNe are Wolf-Rayet WC stars, and late-type WC stars have been observed to be surrounded by dust, at a distance of 10^14 -- 10^15 cm from the star. Consequently, we revisit the possibility of GRB dust echoes, not on a timescale of weeks after the burst but on a timescale of minutes to hours. We find that if the optical flash is sufficiently bright and the jet sufficiently wide, GRB afterglows may be accompanied by chromatic variations on this timescale. From these signatures, such model parameters as the inner radius of the dust distribution, the initial opening angle of the jet, etc., may be deduced. With rapid and regular localizations of GRBs by HETE-2, Integral, and now Swift, and new and improved robotic telescope systems, these early-time GRB dust echoes may soon be detected. We describe one such robotic telescope system, called PROMPT, that the University of North Carolina at Chapel Hill is building at the Cerro Tololo Inter-American Observatory in greater detail.Comment: Accepted to The Astrophysical Journal, 15 pages, 5 figures, LaTe

    Lensing and high-z supernova surveys

    Get PDF
    Gravitational lensing causes the distribution of observed brightnesses of standard candles at a given redshift to be highly non-gaussian. The distribution is strongly, and asymmetrically, peaked at a value less than the expected value in a homogeneous Robertson-Walker universe. Therefore, given any small sample of observations in an inhomogeneous universe, the most likely observed luminosity is at flux values less than the Robertson-Walker value. This paper explores the impact of this systematic error due to lensing upon surveys predicated on measuring standard candle brightnesses. We re-analyze recent results from the high-z supernova team (Riess et al. 1998), both when most of the matter in the universe is in the form of compact objects (represented by the empty-beam expression, corresponding to the maximal case of lensing), and when the matter is continuously distributed in galaxies. We find that the best-fit model remains unchanged (at Omega_m=0, Omega_Lambda=0.45), but the confidence contours change size and shape, becoming larger (and thus allowing a broader range of parameter space) and dropping towards higher values of matter density, Omega_m (or correspondingly, lower values of the cosmological constant, Omega_Lambda). These effects are slight when the matter is continuously distributed. However, the effects become considerably more important if most of the matter is in compact objects. For example, neglecting lensing, the Omega_m=0.5, Omega_Lambda=0.5 model is more than 2 sigma away from the best fit. In the empty-beam analysis, this cosmology is at 1 sigma.Comment: 11 pages, 3 ps figures. uses aaspp4.sty. accepted to ApJ Letters. includes analysis of lensing due to matter continuously distributed in galaxie

    Evidence for Circumburst Extinction of Gamma-Ray Bursts with Dark Optical Afterglows and Evidence for a Molecular Cloud Origin of Gamma-Ray Bursts

    Get PDF
    First, we show that the gamma-ray bursts with dark optical afterglows (DOAs) cannot be explained by a failure to image deeply enough quickly enough, and argue that circumburst extinction is the most likely solution. If so, many DOAs will be ``revived'' with rapid follow up and NIR searches in the HETE-2 and Swift eras. Next, we consider the effects of dust sublimation and fragmentation, and show that DOAs occur in clouds of size R > 10L_{49}^{1/2} pc and mass M > 3x10^5L_{49} M_{sun}, where L is the luminosity of the optical flash. Stability considerations show that such clouds cannot be diffuse, but must be molecular. Consequently, we compute the expected column density distribution of bursts that occur in Galactic-like molecular clouds, and show that the column density measurements from X-ray spectra of afterglows, DOAs and otherwise, satisfy this expectation in the source frame.Comment: Invited Review. To appear in Procs. of Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission, 8 pages, 8 figures, LaTe

    Using gravitational-wave standard sirens

    Full text link
    Gravitational waves (GWs) from supermassive binary black hole (BBH) inspirals are potentially powerful standard sirens (the GW analog to standard candles) (Schutz 1986, 2002). Because these systems are well-modeled, the space-based GW observatory LISA will be able to measure the luminosity distance (but not the redshift) to some distant massive BBH systems with 1-10% accuracy. This accuracy is largely limited by pointing error: GW sources generally are poorly localized on the sky. Localizing the binary independently (e.g., through association with an electromagnetic counterpart) greatly reduces this positional error. An electromagnetic counterpart may also allow determination of the event's redshift. In this case, BBH coalescence would constitute an extremely precise (better than 1%) standard candle visible to high redshift. In practice, gravitational lensing degrades this precision, though the candle remains precise enough to provide useful information about the distance-redshift relation. Even if very rare, these GW standard sirens would complement, and increase confidence in, other standard candles.Comment: 10 pages, 8 figures. ApJ, in pres

    Interstellar Ti II in the Milky Way and Magellanic Clouds

    Get PDF
    We discuss several sets of Ti II absorption-line data, which probe a variety of interstellar environments in our Galaxy and in the Magellanic Clouds. Comparisons of high-resolution (FWHM ~ 1.3-1.5 km/s) Ti II spectra of Galactic targets with corresponding high-resolution spectra of Na I, K I, and Ca II reveal both similarities and differences in the detailed structure of the absorption-line profiles -- reflecting component-to-component differences in the ionization and depletion behaviour of those species. Moderate-resolution (FWHM ~ 3.4-4.5 km/s) spectra of more heavily reddened Galactic stars provide more extensive information on the titanium depletion in colder, denser clouds -- where more than 99.9 per cent of the Ti may be in the dust phase. Moderate-resolution (FWHM ~ 4.5-8.7 km/s) spectra of stars in the Magellanic Clouds suggest that the titanium depletion is generally much less severe in the LMC and SMC than in our Galaxy [for a given N(H_tot), E(B-V), or molecular fraction f(H_2)] -- providing additional evidence for differences in depletion patterns in those two lower-metallicity galaxies. We briefly discuss possible implications of these results for the interpretation of gas-phase abundances in QSO absorption-line systems and of variations in the D/H ratio in the local Galactic ISM.Comment: 56 pages, 26 figures, accepted to MNRA

    Decay of protons and neutrons induced by acceleration

    Get PDF
    We investigate the decay of accelerated protons and neutrons. Calculations are carried out in the inertial and coaccelerated frames. Particle interpretation of these processes are quite different in each frame but the decay rates are verified to agree in both cases. For sake of simplicity our calculations are performed in a two-dimensional spacetime since our conclusions are not conceptually affected by this.Comment: 18 pages (REVTEX), 3 figure
    • …
    corecore