17 research outputs found

    Rectal microbiota are coupled with altered cytokine production capacity following community-acquired pneumonia hospitalization

    Get PDF
    Human studies describing the immunomodulatory role of the intestinal microbiota in systemic infections are lacking. Here, we sought to relate microbiota profiles from 115 patients with community-acquired pneumonia (CAP), both on hospital admission and following discharge, to concurrent circulating monocyte and neutrophil function. Rectal microbiota composition did not explain variation in cytokine responses in acute CAP (median 0%, IQR 0.0%-1.9%), but did one month following hospitalization (median 4.1%, IQR 0.0%-6.6%, p = 0.0035). Gene expression analysis of monocytes showed that undisrupted microbiota profiles following hospitalization were associated with upregulated interferon, interleukin-10, and G-protein-coupled-receptor-ligand-binding pathways. While CAP is characterized by profoundly distorted gut microbiota, the effects of these disruptions on cytokine responses and transcriptional profiles during acute infection were absent or modest. However, rectal microbiota were related to altered cytokine responses one month following CAP hospitalization, which may provide insights into potential mechanisms contributing to the high risk of recurrent infections following hospitalization.peer-reviewe

    High-dimensional phenotyping of the peripheral immune response in community-acquired pneumonia

    Get PDF
    BackgroundCommunity-acquired pneumonia (CAP) represents a major health burden worldwide. Dysregulation of the immune response plays an important role in adverse outcomes in patients with CAP.MethodsWe analyzed peripheral blood mononuclear cells by 36-color spectral flow cytometry in adult patients hospitalized for CAP (n=40), matched control subjects (n=31), and patients hospitalized for COVID-19 (n=35).ResultsWe identified 86 immune cell metaclusters, 19 of which (22.1%) were differentially abundant in patients with CAP versus matched controls. The most notable differences involved classical monocyte metaclusters, which were more abundant in CAP and displayed phenotypic alterations reminiscent of immunosuppression, increased susceptibility to apoptosis, and enhanced expression of chemokine receptors. Expression profiles on classical monocytes, driven by CCR7 and CXCR5, divided patients with CAP into two clusters with a distinct inflammatory response and disease course. The peripheral immune response in patients with CAP was highly similar to that in patients with COVID-19, but increased CCR7 expression on classical monocytes was only present in CAP.ConclusionCAP is associated with profound cellular changes in blood that mainly relate to classical monocytes and largely overlap with the immune response detected in COVID-19

    Intracellular pyruvate levels positively correlate with cytokine production capacity in tolerant monocytes from patients with pneumonia

    Get PDF
    Background: Community-acquired pneumonia (CAP) is responsible for a high morbidity and mortality worldwide. Monocytes are essential for pathogen recognition and the initiation of an innate immune response. Immune cells induce intracellular glycolysis upon activation to support several functions. Objective: To obtain insight in the metabolic profile of blood monocytes during CAP, with a focus on glycolysis and branching metabolic pathways, and to determine a possible association between intracellular metabolite levels and monocyte function. Methods: Monocytes were isolated from blood of patients with CAP within 24 h of hospital admission and from control subjects matched for age, sex and chronic comorbidities. Changes in glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and the pentose phosphate pathway were investigated through RNA sequencing and metabolomics measurements. Monocytes were stimulated ex vivo with lipopolysaccharide (LPS) to determine their capacity to produce tumor necrosis factor (TNF), interleukin (IL)-1β and IL-10. Results: 50 patients with CAP and 25 non-infectious control subjects were studied. When compared with control monocytes, monocytes from patients showed upregulation of many genes involved in glycolysis, including PKM, the gene encoding pyruvate kinase, the rate limiting enzyme for pyruvate production. Gene set enrichment analysis of OXPHOS, the TCA cycle and the pentose phosphate pathway did not reveal differences between monocytes from patients and controls. Patients' monocytes had elevated intracellular levels of pyruvate and the TCA cycle intermediate α-ketoglutarate. Monocytes from patients were less capable of producing cytokines upon LPS stimulation. Intracellular pyruvate (but not α-ketoglutarate) concentrations positively correlated with IL-1β and IL-10 levels released by patients' (but not control) monocytes upon exposure to LPS. Conclusion: These results suggest that elevated intracellular pyruvate levels may partially maintain cytokine production capacity of hyporesponsive monocytes from patients with CAP.peer-reviewe

    Concurrent Immune Suppression and Hyperinflammation in Patients With Community-Acquired Pneumonia

    Get PDF
    Background: The nature and timing of the host immune response during infections remain uncertain and most knowledge is derived from critically ill sepsis patients. We aimed to test the hypothesis that community-acquired pneumonia (CAP) is associated with concurrent immune suppression and systemic inflammation. Methods: Blood was collected from 79 CAP patients within 24 h after hospitalization and 1 month after discharge; 42 age- and sex-matched subjects without acute infection served as controls. Blood leukocytes were stimulated with lipopolysaccharide (LPS) or Klebsiella pneumoniae, and cytokines were measured in supernatants. Fifteen plasma biomarkers reflective of key host response pathways were compared between CAP patients with the strongest immune suppression (lowest 25% blood leukocyte tumor necrosis factor (TNF)-α production in response to LPS) and those with the least immune suppression (highest 25% of LPS-induced TNF-α production). Results: Blood leukocytes of CAP patients (relative to control subjects) showed a reduced capacity to release TNF-α, interleukin (IL)-1β, IL-6 and IL-10 upon stimulation with LPS or K. pneumoniae, with a concurrently enhanced ability to release the anti-inflammatory mediator IL-1 receptor antagonist, irrespective of the presence of sepsis (18.9% of cases). Low (relative to high) TNF-α producers displayed higher plasma levels of biomarkers reflecting systemic inflammation, neutrophil degranulation, endothelial cell activation, a disturbed vascular barrier function and coagulation activation. Conclusion: CAP replicates a common feature of immune suppression in sepsis. The coexistence of immune suppression and hyperinflammation in CAP argues against the theory of two distinct phases during the host response to sepsis

    Corrigendum: Concurrent Immune Suppression and Hyperinflammation in Patients With Community-Acquired Pneumonia (Front. Immunol, (2020), 11, (796), 10.3389/fimmu.2020.00796)

    Get PDF
    In the original article, there was a mistake in Figures 1–3 as published. The colors in the legend mistakenly mislabeled the conditions. The corrected figures appear below, along with the figure legends, which remain unchanged. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

    Bacterial and Viral Respiratory Tract Microbiota and Host Characteristics in Adults With Lower Respiratory Tract Infections: A Case-Control Study

    No full text
    Background: Viruses and bacteria from the nasopharynx are capable of causing community-acquired pneumonia (CAP), which can be difficult to diagnose. We aimed to investigate whether shifts in the composition of these nasopharyngeal microbial communities can be used as diagnostic biomarkers for CAP in adults. Methods: We collected nasopharyngeal swabs from adult CAP patients and controls without infection in a prospective multicenter case-control study design. We generated bacterial and viral profiles using 16S ribosomal RNA gene sequencing and multiplex polymerase chain reaction (PCR), respectively. Bacterial, viral, and clinical data were subsequently used as inputs for extremely randomized trees classification models aiming to distinguish subjects with CAP from healthy controls. Results: We enrolled 117 cases and 48 control subjects. Cases displayed significant beta diversity differences in nasopharyngeal microbiota (P = .016, R2 =. 01) compared to healthy controls. Our extremely randomized trees classification models accurately discriminated CAP caused by bacteria (area under the curve [AUC]. 83), viruses (AUC. 95) or mixed origin (AUC. 81) from healthy control subjects. We validated this approach using a dataset of nasopharyngeal samples from 140 influenza patients and 38 controls, which yielded highly accurate (AUC. 93) separation between cases and controls. Conclusions: Relative proportions of different bacteria and viruses in the nasopharynx can be leveraged to diagnose CAP and identify etiologic agent(s) in adult patients. Such data can inform the development of a microbiota-based diagnostic panel used to identify CAP patients and causative agents from nasopharyngeal samples, potentially improving diagnostic specificity, efficiency, and antimicrobial stewardship practices

    Bacterial and viral respiratory tract microbiota and host characteristics in adults with lower respiratory tract infections : a case-control study

    Get PDF
    Background: Viruses and bacteria from the nasopharynx are capable of causing community-acquired pneumonia (CAP), which can be difficult to diagnose. We aimed to investigate whether shifts in the composition of these nasopharyngeal microbial communities can be used as diagnostic biomarkers for CAP in adults.Methods: We collected nasopharyngeal swabs from adult CAP patients and controls without infection in a prospective multicenter case-control study design. We generated bacterial and viral profiles using 16S ribosomal RNA gene sequencing and multiplex polymerase chain reaction (PCR), respectively. Bacterial, viral, and clinical data were subsequently used as inputs for extremely randomized trees classification models aiming to distinguish subjects with CAP from healthy controls.Results: We enrolled 117 cases and 48 control subjects. Cases displayed significant beta diversity differences in nasopharyngeal microbiota (P = .016, R2 = .01) compared to healthy controls. Our extremely randomized trees classification models accurately discriminated CAP caused by bacteria (area under the curve [AUC] .83), viruses (AUC .95) or mixed origin (AUC .81) from healthy control subjects. We validated this approach using a dataset of nasopharyngeal samples from 140 influenza patients and 38 controls, which yielded highly accurate (AUC .93) separation between cases and controls.Conclusions: Relative proportions of different bacteria and viruses in the nasopharynx can be leveraged to diagnose CAP and identify etiologic agent(s) in adult patients. Such data can inform the development of a microbiota-based diagnostic panel used to identify CAP patients and causative agents from nasopharyngeal samples, potentially improving diagnostic specificity, efficiency, and antimicrobial stewardship practices.peer-reviewe

    An epigenetic and transcriptomic signature of immune tolerance in human monocytes through multi-omics integration

    No full text
    Background: The plasticity of monocytes enables them to exert multiple roles during an immune response, including promoting immune tolerance. How monocytes alter their functions to convey immune tolerance in the context of lower respiratory tract infections in humans is not well understood. Here, we sought to identify epigenetic and transcriptomic features of cytokine production capacity in circulating monocytes during community-acquired pneumonia (CAP). Methods: Circulating CD14+ monocytes were obtained from the blood of CAP patients included in a longitudinal, observational cohort study, on hospitalization (acute stage, n=75), and from the same patients after a 1-month follow-up (recovery stage, n=56). Age and sex-matched non-infectious participants were included as controls (n=41). Ex vivo cytokine production after lipopolysaccharide (LPS) exposure was assessed by multiplex assay. Transcriptomes of circulating monocytes were generated by RNA-sequencing, and DNA methylation levels in the same monocytes were measured by reduced representation bisulfite sequencing. Data were integrated by fitting projection-to-latent-structure models, and signatures derived by partial least squares discrimination. Results: Monocytes captured during the acute stage exhibited impaired TNF, IL-1β, IL-6, and IL-10 production after ex vivo stimulation with LPS, relative to controls. IL-6 production was not resolved in recovery monocytes. Multivariate analysis of RNA-sequencing data identified 2938 significantly altered RNA transcripts in acute-stage monocytes (fold expression ≤−1.5 or ≥1.5; adjusted p ≤ 0.01), relative to controls. Comparing DNA methylation levels in circulating monocytes of CAP patients to controls revealed minimal differences, specifically in DNAse hypersensitive sites (HS) of acute-stage monocytes. Data integration identified a cholesterol biosynthesis gene signature and DNAse HS axis of IL-1β and IL-10 production (R2 =0.51). Conclusions: Circulating monocytes obtained from CAP patients during the acute stage exhibited impaired cytokine production capacities, indicative of reprogramming to a state of immune tolerance, which was not fully resolved after 1 month. Our split-sample study showed that 51% of the immune tolerance phenotype can be explained, at least in part, by coordinated shifts in cholesterol biosynthesis gene expression and DNAse HS methylation levels. A multi-scale model identified an epigenetic and transcriptomic signature of immune tolerance in monocytes, with implications for future interventions in immunosuppression. Trial registration: NCT number NCT0292836

    Rectal bacteriome and virome signatures and clinical outcomes in community-acquired pneumonia : an exploratory study

    Get PDF
    Background: Bacterial intestinal communities interact with the immune system and may contribute to protection against community-acquired pneumonia (CAP). Intestinal viruses are closely integrated with these bacterial communities, yet the composition and clinical significance of these communities in CAP patients are unknown. The aims of this exploratory study were to characterise the composition of the rectal bacteriome and virome at hospital admission for CAP, and to determine if microbiota signatures correlate with clinical outcomes.Methods: We performed a prospective observational cohort study in CAP patients, admitted to a university or community hospital in the Netherlands between October 2016 and July 2018, and controls. Rectal bacteriome and virome composition were characterised using 16S ribosomal RNA gene sequencing and virus discovery next-generation sequencing, respectively. Unsupervised multi-omics factor analysis was used to assess the co-variation of bacterial and viral communities, which served as primary predictor. The clinical outcomes of interest were the time to clinical stability and the length of hospital stay.Findings: 64 patients and 38 controls were analysed. Rectal bacterial alpha (p = 0•0015) and beta diversity (r2 =0•023, p = 0•004) of CAP patients differed from controls. Bacterial and viral microbiota signatures correlated with the time to clinical stability (hazard ratio 0•43, 95% confidence interval 0•20-0•93, p = 0•032) and the length of hospital stay (hazard ratio 0•37, 95% confidence interval 0•17-0•81, p = 0•012), although only the latter remained significant following p-value adjustment for examining multiple candidate cut-points (p = 0•12 and p = 0•046, respectively).Interpretation: This exploratory study provides preliminary evidence that intestinal bacteriome and virome signatures could be linked with clinical outcomes in CAP. Such exploratory data, when validated in independent cohorts, could inform the development of a microbiota-based diagnostic panel used to predict clinical outcomes in CAP.Funding Netherlands Organization for Scientific Research and Netherlands Organization for Health Research and Development.peer-reviewe

    DataSheet_1_High-dimensional phenotyping of the peripheral immune response in community-acquired pneumonia.docx

    No full text
    BackgroundCommunity-acquired pneumonia (CAP) represents a major health burden worldwide. Dysregulation of the immune response plays an important role in adverse outcomes in patients with CAP.MethodsWe analyzed peripheral blood mononuclear cells by 36-color spectral flow cytometry in adult patients hospitalized for CAP (n=40), matched control subjects (n=31), and patients hospitalized for COVID-19 (n=35).ResultsWe identified 86 immune cell metaclusters, 19 of which (22.1%) were differentially abundant in patients with CAP versus matched controls. The most notable differences involved classical monocyte metaclusters, which were more abundant in CAP and displayed phenotypic alterations reminiscent of immunosuppression, increased susceptibility to apoptosis, and enhanced expression of chemokine receptors. Expression profiles on classical monocytes, driven by CCR7 and CXCR5, divided patients with CAP into two clusters with a distinct inflammatory response and disease course. The peripheral immune response in patients with CAP was highly similar to that in patients with COVID-19, but increased CCR7 expression on classical monocytes was only present in CAP.ConclusionCAP is associated with profound cellular changes in blood that mainly relate to classical monocytes and largely overlap with the immune response detected in COVID-19.</p
    corecore