7,484 research outputs found

    Dynamical Behavior of a stochastic SIRS epidemic model

    Full text link
    In this paper we study the Kernack - MacKendrick model under telegraph noise. The telegraph noise switches at random between two SIRS models. We give out conditions for the persistence of the disease and the stability of a disease free equilibrium. We show that the asymptotic behavior highly depends on the value of a threshold λ\lambda which is calculated from the intensities of switching between environmental states, the total size of the population as well as the parameters of both SIRS systems. According to the value of λ\lambda, the system can globally tend towards an endemic case or a disease free case. The aim of this work is also to describe completely the omega-limit set of all positive solutions to the model. Moreover, the attraction of the omega-limit set and the stationary distribution of solutions will be pointed out.Comment: 16 page

    On the momentum-dependence of K−K^{-}-nuclear potentials

    Get PDF
    The momentum dependent K−K^{-}-nucleus optical potentials are obtained based on the relativistic mean-field theory. By considering the quarks coordinates of K−K^- meson, we introduced a momentum-dependent "form factor" to modify the coupling vertexes. The parameters in the form factors are determined by fitting the experimental K−K^{-}-nucleus scattering data. It is found that the real part of the optical potentials decrease with increasing K−K^- momenta, however the imaginary potentials increase at first with increasing momenta up to Pk=450∌550P_k=450\sim 550 MeV and then decrease. By comparing the calculated K−K^- mean free paths with those from K−nK^-n/K−pK^-p scattering data, we suggested that the real potential depth is V0∌80V_0\sim 80 MeV, and the imaginary potential parameter is W0∌65W_0\sim 65 MeV.Comment: 9 pages, 4 figure

    The hyperon mean free paths in the relativistic mean field

    Full text link
    The Λ\Lambda- and Ξ−\Xi^--hyperon mean free paths in nuclei are firstly calculated in the relativistic mean field (RMF) theory. The real parts of the optical potential are derived from the RMF approach, while the imaginary parts are obtained from those of nucleons with the relations: USIY=ασY⋅USINU^{\mathrm{IY}}_{\mathrm{S}} = \alpha_{\sigma \mathrm{Y}}\cdot U_{\mathrm{S}}^{\mathrm{IN}} and UVIY=αωY⋅UVINU^{\mathrm{IY}}_{\mathrm{V}} = \alpha_{\omega \mathrm{Y}}\cdot U_{\mathrm{V}}^{\mathrm{IN}} . With the assumption, the depth of the imaginary potential for Ξ−\Xi^- is WΞ≃−W_{\Xi}\simeq- 3.5 MeV, and for Λ\Lambda is WΛ≃−W_{\Lambda}\simeq- 7 MeV at low incident energy. We find that, the hyperon mean free path decreases with the increase of the hyperon incident energies, from 200 MeV to 800 MeV; and in the interior of the nuclei, the mean free path is about 2∌32\sim 3 fm for Λ\Lambda, and about 4∌84\sim 8 fm for Ξ−\Xi^-, depending on the hyperon incident energy.Comment: 5 figures, 6 page

    Finite pure bending of curved pipes

    Get PDF
    We present an original treatment for the finite bending of curved pipes with arbitrary cross sections. The curved pipe is successively regarded as a three-dimensional continuum and a shell, and a formulation is proposed for each model. We show that, from a numerical point of view, the finite bending problem is reducible to an axisymmetric analysis augmented with 1 d.f. We also show how to take advantage of this analogy to solve the bending problem using standard axisymmetric FE routine

    Synchronized and Desynchronized Phases of Exciton-Polariton Condensates in the Presence of Disorder

    Get PDF
    Condensation of exciton-polaritons in semiconductor microcavities takes place despite in plane disorder. Below the critical density the inhomogeneity of the potential seen by the polaritons strongly limits the spatial extension of the ground state. Above the critical density, in presence of weak disorder, this limitation is spontaneously overcome by the non linear interaction, resulting in an extended synchronized phase. This mechanism is clearly evidenced by spatial and spectral studies, coupled to interferometric measurements. In case of strong disorder, several non phase-locked (independent) condensates can be evidenced. The transition from synchronized phase to desynchronized phase is addressed considering multiple realizations of the disorder.Comment: 11 pages, 4 figures,corrected typos, added figure
    • 

    corecore