5,209 research outputs found

    Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer

    Full text link
    We describe an ultra-sensitive atomic magnetometer using optically-pumped potassium atoms operating in spin-exchange relaxation free (SERF) regime. We demonstrate magnetic field sensitivity of 160 aT/Hz1/2^{1/2} in a gradiometer arrangement with a measurement volume of 0.45 cm3^3 and energy resolution per unit time of 4444 \hbar. As an example of a new application enabled by such a magnetometer we describe measurements of weak remnant rock magnetization as a function of temperature with a sensitivity on the order of 1010^{-10} emu/cm3^3/Hz1/2^{1/2} and temperatures up to 420^\circC

    Quantum magnetism and counterflow supersolidity of up-down bosonic dipoles

    Full text link
    We study a gas of dipolar Bosons confined in a two-dimensional optical lattice. Dipoles are considered to point freely in both up and down directions perpendicular to the lattice plane. This results in a nearest neighbor repulsive (attractive) interaction for aligned (anti-aligned) dipoles. We find regions of parameters where the ground state of the system exhibits insulating phases with ferromagnetic or anti-ferromagnetic ordering, as well as with rational values of the average magnetization. Evidence for the existence of a novel counterflow supersolid quantum phase is also presented.Comment: 8 pages, 6 figure

    adiabatic versus nonadiabatic dressed-state dynamics

    Get PDF
    We discuss how a recent pump-probe study [Kelkensberg et al., Phys. Rev. Lett. 103, 123005 (2009)] of the dissociative ionization of H2, under the combined effect of a single extreme ultraviolet attosecond pulse and an intense near- infrared pulse, actually represents a transition-state spectroscopy of the strong-field dissociation step, i.e., of the (probe-pulse-)dressed H2+ molecular ion. The way the dissociation dynamics is influenced by the duration of the near-infrared probe pulse, and by the time delay between the two pulses, is discussed in terms of adiabatic versus nonadiabatic preparation and transport of time-parametrized Floquet resonances associated with the dissociating molecular ion. Under a long probe pulse, the field-free vibrational states of the initial wave packet are transported, in a one-to-one manner, onto the Floquet resonances defined by the field intensity of the probe pulse and propagated adiabatically under the pulse. As the probe pulse duration shortens, nonadiabatic transitions between the Floquet resonances become important and manifest themselves in two respects: first, as a vibrational shake-up effect occurring near the peak of the short pulse, and second, through strong interference patterns in the fragment's kinetic energy spectrum, viewed as a function of the time delay between the pump and the probe pulses

    A smooth introduction to the wavefront set

    Full text link
    The wavefront set provides a precise description of the singularities of a distribution. Because of its ability to control the product of distributions, the wavefront set was a key element of recent progress in renormalized quantum field theory in curved spacetime, quantum gravity, the discussion of time machines or quantum energy inequalitites. However, the wavefront set is a somewhat subtle concept whose standard definition is not easy to grasp. This paper is a step by step introduction to the wavefront set, with examples and motivation. Many different definitions and new interpretations of the wavefront set are presented. Some of them involve a Radon transform.Comment: 29 pages, 7 figure

    Removal of volatile phenols from wine using crosslinked cyclodextrin polymers

    Get PDF
    Volatile phenols have been implicated as contributors to off-odors associated with taints from bushfire smoke and microbial spoilage. Various methods for the amelioration of off-odors have been evaluated, but to date, they have not included cyclodextrin (CD) polymers. In the current study, two CD polymers were prepared from β- and γ-CD, using hexamethylene diisocyanate (HDI) as a crosslinking agent. Adsorption tests were performed with four volatile phenols (guaiacol, 4-methylguaiacol, 4-ethylguaiacol and 4-ethylphenol) at concentrations up to 1 mg/L. The removal of volatile phenols by CD polymers achieved equilibrium almost instantly, with isotherm tests suggesting an adsorption capacity of 20.7 µg of volatile phenol per gram of polymer. Langmuir and Freundlich models were subsequently used to fit the data. In batch adsorption tests, the CD polymers achieved 45 to 77% removal of volatile phenols. Polymer reusability was also evaluated and was found to be excellent. A comparison between volatile phenol adsorption by CDs vs. CD polymers, determined using a novel four-phase headspace solid-phase microextraction (HS-SPME) method for gas chromatography-mass spectrometry (GC-MS), suggests CD polymers offer several advantages for use by the wine industry.Chao Dang, Vladimir Jiranek, Dennis K. Taylor and Kerry L. Wilkinso

    Complete spectral data for analytic Anosov maps of the torus

    Get PDF
    Using analytic properties of Blaschke factors we construct a family of analytic hyperbolic diffeomorphisms of the torus for which the spectral properties of the associated transfer operator acting on a suitable Hilbert space can be computed explicitly. As a result, we obtain explicit expressions for the decay of correlations of analytic observables without resorting to any kind of perturbation argument.Comment: 19 pages, 4 figure

    Time-Dependent c-Myc Transactomes Mapped by Array-Based Nuclear Run-On Reveal Transcriptional Modules in Human B Cells

    Get PDF
    The definition of transcriptional networks through measurements of changes in gene expression profiles and mapping of transcription factor binding sites is limited by the moderate overlap between binding and gene expression changes and the inability to directly measure global nuclear transcription (coined "transactome").We developed a method to measure nascent nuclear gene transcription with an Array-based Nuclear Run-On (ANRO) assay using commercial microarray platforms. This strategy provides the missing component, the transactome, to fully map transcriptional networks. ANRO measurements in an inducible c-Myc expressing human P493-6 B cell model reveals time-dependent waves of transcription, with a transactome early after c-Myc induction that does not persist at a late, steady-state phase, when genes that are regulated by c-Myc and E2F predominate. Gene set matrix analysis further uncovers functionally related groups of genes putatively regulated by waves of transcription factor motifs following Myc induction, starting with AP1 and CREB that are followed by EGR1, NFkB and STAT, and ending with E2F, Myc and ARNT/HIF motifs.By coupling ANRO with previous global mapping of c-Myc binding sites by chromatin immunoprecipitation (ChIP) in P493-6 cells, we define a set of transcriptionally regulated direct c-Myc target genes and pave the way for the use of ANRO to comprehensively map any transcriptional network

    Enhancement of Rabi Splitting in a Microcavity with an Embedded Superlattice

    Full text link
    We have observed a large coupling between the excitonic and photonic modes of an AlAs/AlGaAs microcavity filled with an 84-({\rm {\AA}})/20({\rm {\AA}}) GaAs/AlGaAs superlattice. Reflectivity measurements on the coupled cavity-superlattice system in the presence of a moderate electric field yielded a Rabi splitting of 9.5 meV at T = 238 K. This splitting is almost 50% larger than that found in comparable microcavities with quantum wells placed at the antinodes only. We explain the enhancement by the larger density of optical absorbers in the superlattice, combined with the quasi-two-dimensional binding energy of field-localized excitons.Comment: 5 pages, 4 figures, submitted to PR

    Nuclear pairing: new perspectives

    Full text link
    Nuclear pairing correlations are known to play an important role in various single-particle and collective aspects of nuclear structure. After the first idea by A. Bohr, B. Mottelson and D. Pines on similarity of nuclear pairing to electron superconductivity, S.T. Belyaev gave a thorough analysis of the manifestations of pairing in complex nuclei. The current revival of interest in nuclear pairing is connected to the shift of modern nuclear physics towards nuclei far from stability; many loosely bound nuclei are particle-stable only due to the pairing. The theoretical methods borrowed from macroscopic superconductivity turn out to be insufficient for finite systems as nuclei, in particular for the cases of weak pairing and proximity of continuum states. We suggest a simple numerical procedure of exact solution of the nuclear pairing problem and discuss the physical features of this complete solution. We show also how the continuum states can be naturally included in the consideration bridging the gap between the structure and reactions. The path from coherent pairing to chaos and thermalization and perspectives of new theoretical approaches based on the full solution of pairing are discussed.Comment: 47 pages, 11 figure
    corecore