5,567 research outputs found

    An Efficient Method for GPS Multipath Mitigation Using the Teager-Kaiser-Operator-based MEDLL

    Get PDF
    An efficient method for GPS multipath mitigation is proposed. The motivation for this proposed method is to integrate the Teager-Kaiser Operator (TKO) with the Multipath Estimating Delay Lock Loop (MEDLL) module to mitigate the GPS multipath efficiently. The general implementation process of the proposed method is that we first utilize the TKO to operate on the received signal’s Auto-Correlation Function (ACF) to get an initial estimate of the multipaths. Then we transfer the initial estimated results to the MEDLL module for a further estimation. Finally, with a few iterations which are less than those of the original MEDLL algorithm, we can get a more accurate estimate of the Line-Of-Sight (LOS) signal, and thus the goal of the GPS multipath mitigation is achieved. The simulation results show that compared to the original MEDLL algorithm, the proposed method can reduce the computation load and the hardware and/or software consumption of the MEDLL module, meanwhile, without decreasing the algorithm accuracy

    On the momentum-dependence of KK^{-}-nuclear potentials

    Get PDF
    The momentum dependent KK^{-}-nucleus optical potentials are obtained based on the relativistic mean-field theory. By considering the quarks coordinates of KK^- meson, we introduced a momentum-dependent "form factor" to modify the coupling vertexes. The parameters in the form factors are determined by fitting the experimental KK^{-}-nucleus scattering data. It is found that the real part of the optical potentials decrease with increasing KK^- momenta, however the imaginary potentials increase at first with increasing momenta up to Pk=450550P_k=450\sim 550 MeV and then decrease. By comparing the calculated KK^- mean free paths with those from KnK^-n/KpK^-p scattering data, we suggested that the real potential depth is V080V_0\sim 80 MeV, and the imaginary potential parameter is W065W_0\sim 65 MeV.Comment: 9 pages, 4 figure

    Relativistic Coulomb Sum Rules for (e,e)(e,e^\prime)

    Full text link
    A Coulomb sum rule is derived for the response of nuclei to (e,e)(e,e^\prime) scattering with large three-momentum transfers. Unlike the nonrelativistic formulation, the relativistic Coulomb sum is restricted to spacelike four-momenta for the most direct connection with experiments; an immediate consequence is that excitations involving antinucleons, e.g., NNˉN{\bar N} pair production, are approximately eliminated from the sum rule. Relativistic recoil and Fermi motion of target nucleons are correctly incorporated. The sum rule decomposes into one- and two-body parts, with correlation information in the second. The one-body part requires information on the nucleon momentum distribution function, which is incorporated by a moment expansion method. The sum rule given through the second moment (RCSR-II) is tested in the Fermi gas model, and is shown to be sufficiently accurate for applications to data.Comment: 32 pages (LaTeX), 4 postscript figures available from the author

    Competing magnetic fluctuations in Sr3Ru2O7 probed by Ti doping

    Full text link
    We report the effect of nonmagnetic Ti4+ impurities on the electronic and magnetic properties of Sr3Ru2O7. Small amounts of Ti suppress the characteristic peak in magnetic susceptibility near 16 K and result in a sharp upturn in specific heat. The metamagnetic quantum phase transition and related anomalous features are quickly smeared out by small amounts of Ti. These results provide strong evidence for the existence of competing magnetic fluctuations in the ground state of Sr3Ru2O7. Ti doping suppresses the low temperature antiferromagnetic interactions that arise from Fermi surface nesting, leaving the system in a state dominated by ferromagnetic fluctuations.Comment: 5 pages, 4 figures, 1 tabl
    corecore