29 research outputs found

    Determinants of fluconazole resistance and the efficacy of fluconazole and milbemycin oxim combination against Candida parapsilosis clinical isolates from Brazil and Turkey

    Get PDF
    Fluconazole-resistant Candida parapsilosis (FLZR-CP) outbreaks are a growing public health concern and have been reported in numerous countries. Patients infected with FLZR-CP isolates show fluconazole therapeutic failure and have a significantly increased mortality rate. Because fluconazole is the most widely used antifungal agent in most regions with outbreaks, it is paramount to restore its antifungal activity. Milbemycin oxim (MOX), a well-known canine endectocide, is a potent efflux pump inhibitor that significantly potentiates the activity of fluconazole against FLZR C. glabrata and C. albicans. However, the FLZ-MOX combination has not been tested against FLZR-CP isolates, nor is it known whether MOX may also potentiate the activity of echinocandins, a different class of antifungal drugs. Furthermore, the extent of involvement of efflux pumps CDR1 and MDR1 and ergosterol biosynthesis enzyme ERG11 and their link with gain-of-function (GOF) mutations in their transcription regulators (TAC1, MRR1, and UPC2) are poorly characterized among FLZR-CP isolates. We analyzed 25 C. parapsilosis isolates collected from outbreaks in Turkey and Brazil by determining the expression levels of CDR1, MDR1, and ERG11, examining the presence of potential GOF mutations in their transcriptional regulators, and assessing the antifungal activity of FLZ-MOX and micafungin-MOX against FLZR and multidrug-resistant (MDR) C. parapsilosis isolates. ERG11 was found to be universally induced by fluconazole in all isolates, while expression of MDR1 was unchanged. Whereas mutations in MRR1 and UPC2 were not detected, CDR1 was overexpressed in three Brazilian FLZR-CP isolates, which also carried a novel TAC1L518F mutation. Of these three isolates, one showed increased basal expression of CDR1, while the other two overexpressed CDR1 only in the presence of fluconazole. Interestingly, MOX showed promising antifungal activity against FLZR isolates, reducing the FLZ MIC 8- to 32-fold. However, the MOX and micafungin combination did not exert activity against an MDR C. parapsilosis isolate. Collectively, our study documents that the mechanisms underpinning FLZR are region specific, where ERG11 mutations were the sole mechanism of FLZR in Turkish FLZR-CP isolates, while simultaneous overexpression of CDR1 was observed in some Brazilian counterparts. Moreover, MOX and fluconazole showed potent synergistic activity, while the MOX-micafungin combination showed no synergy

    Comparative genomic analysis of clinical Candida glabrata isolates identifies multiple polymorphic loci that can improve existing multilocus sequence typing strategy

    Get PDF
    Candida glabrata is the second leading cause of candidemia in many countries and is one of the most concerning yeast species of nosocomial importance due to its increasing rate of antifungal drug resistance and emerging multidrug-resistant isolates. Application of multilocus sequence typing (MLST) to clinical C. glabrata isolates revealed an association of certain sequence types (STs) with drug resistance and mortality. The current C. glabrata MLST scheme is based on single nucleotide polymorphisms (SNPs) at six loci and is therefore relatively laborious and costly. Furthermore, only a few high-quality C. glabrata reference genomes are available, limiting rapid analysis of clinical isolates by whole genome sequencing. In this study we provide long-read based assemblies for seven additional clinical strains belonging to three different STs and use this information to simplify the C. glabrata MLST scheme. Specifically, a comparison of these genomes identified highly polymorphic loci (HPL) defined by frequent insertions and deletions (indels), two of which proved to be highly resolutive for ST. When challenged with 53 additional isolates, a combination of TRP1 (a component of the current MLST scheme) with either of the two HPL fully recapitulated ST identification. Therefore, our comparative genomic analysis identified a new typing approach combining SNPs and indels and based on only two loci, thus significantly simplifying ST identification in C. glabrata. Because typing tools are instrumental in addressing numerous clinical and biological questions, our new MLST scheme can be used for high throughput typing of C. glabrata in clinical and research settings.We thank Dibyendu Kumar (Rutgers University) for help with C. glabrata PacBio sequencing. This work was supported by NIH 5R01AI109025 to D.S.P. TG group acknowledges support from the Spanish Ministry of Science and Innovation for grant PGC2018-099921-B-I00, cofounded by European Regional Development Fund (ERDF); from the Catalan Research Agency (AGAUR) SGR423; from the European Union's Horizon 2020 research and innovation programme (ERC-2016-724173); from the Gordon and Betty Moore Foundation (Grant GBMF9742) and from the Instituto de Salud Carlos III (INB Grant PT17/0009/0023 – ISCIII-SGEFI/ERDF).Peer ReviewedPostprint (published version

    Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments

    No full text
    Quantifying crop response to irrigation is important for establishing effective irrigation management strategies. The present study was conducted to evaluate the response of berseem clover and basil to limited irrigation in an additive intercropping system using a surfactant. The experimental treatments were carried out in split–split plots based on a completely randomized block design with three replications. The limited irrigation treatments comprised of replenishment of I100full irrigation, I75= 25% limited and I50= 50% limited weekly evaporation and plant water requirements which were assigned to the main plots. The planting systems of sole berseem clover and sole basil culture along with additive inter cropping of berseem clover + 50% basil were assigned to the subplots. Water treatments of control (wateralone) and water + surfactant were assigned to the sub-subplots. Results show that severely limited irrigation (I50) dramatically reduced the forage yield of berseem clover and basil by 19.5% compared with the control (I100). The severity of the adverse effects of limited irrigation stress decreased by the surfactant application in irrigation by water + surfactant (9.5% decrement compared to full irrigation). The highest irrigation water use efficiency (2.7 kg m−3) was achieved in I50 treatment with an added surfactant. The highest total dry matter yield (berseem clover + basil dry matter) (9257.9 kg ha−1) was obtained from additive intercropping of berseem clover 100% + basil 50% while irrigated by water + surfactant

    Berseem clover quality and basil essential oil yield in intercropping system under limited irrigation treatments with surfactant

    No full text
    The presented study is a comprehensive report on the qualitative configuration of crop quality, essential oil percentage and oil yield in berseem clover and basil under limited irrigation and additive intercropping systems using a nonionic surfactant. This experimental field study was conducted in the 2012–2014 growing seasons to identify the best combination of irrigation level, sowing pattern and water treatment for basil oil content and yield, and berseem clover with an acceptable forage quality for arid and semi-arid regions. The limited irrigation treatments comprised of full irrigation, I100 (100%), moderately limited, I75 (75%), and severely limited, I50 (50%). The planting systems of sole berseem clover and sole basil culture, along with the additive intercropping of berseem clover and 50% basil, were assigned to the plots under water treatment alone (control) and water with surfactant setups. Results show that, as the severity of drought stress increased (I50), dry matter digestibility of berseem clover in I50 with surfactant decreased moderately when compared to I50 irrigation alone. Crude protein, water-soluble carbohydrates and neutral detergent fiber percentages followed increasing trends in limited irrigation systems in water treatments both with and without surfactant. All forage quality traits of berseem clover were improved in the additive intercropping treatment (legume–basil mixture). Application of surfactant was favorable to a sole basil culture, enhancing the essential oil percentage as well as oil yield under a deficit irrigation treatment. The highest essential oil yield (11.45 kg ha−1) was achieved in the I75 with surfactant treatment. Additionally, the basil essential oil yield increased during sole cropping in comparison with the mixed cropping system. The water use efficiency in the intercropping system across surfactants in arid and semi-arid regions was improved during the warm season when soil water availability decreased due to the high temperature and low precipitation

    Clonal Candidemia Outbreak by Candida parapsilosis Carrying Y132F in Turkey: Evolution of a Persisting Challenge

    No full text
    As the second leading etiological agent of candidemia in Turkey and the cause of severe fluconazole-non-susceptible (FNS) clonal outbreaks, Candida parapsilosis emerged as a major health threat at Ege University Hospital (EUH). Evaluation of microbiological and pertinent clinical profiles of candidemia patients due to C. parapsilosis in EUH in 2019-2020. Candida parapsilosis isolates were collected from blood samples and identified by sequencing internal transcribed spacer ribosomal DNA. Antifungal susceptibility testing was performed in accordance with CLSI M60 protocol and ERG11 and HS1/HS2-FKS1 were sequenced to explore the fluconazole and echinocandin resistance, respectively. Isolates were typed using a multilocus microsatellite typing assay. Relevant clinical data were obtained for patients recruited in the current study. FNS C. parapsilosis isolates were recovered from 53% of the patients admitted to EUH in 2019-2020. Y132F was the most frequent mutation in Erg11. All patients infected with C. parapsilosis isolates carrying Y132F, who received fluconazole showed therapeutic failure and significantly had a higher mortality than those infected with other FNS and susceptible isolates (50% vs. 16.1%). All isolates carrying Y132F grouped into one major cluster and mainly recovered from patients admitted to chest diseases and pediatric surgery wards. The unprecedented increase in the number of Y132F C. parapsilosis, which corresponded with increased rates of fluconazole therapeutic failure and mortality, is worrisome and highlights the urgency for strict infection control strategies, antifungal stewardship, and environmental screening in EUH.This work was supported by the Major National R;D Projects of the National Health Department [2018ZX10101003], National Natural Science Foundation of China [31770161], Shanghai Science and Technology Committee [17DZ2272900 and 14495800500], Shanghai Municipal Commission of Health and Family Planning [2017ZZ01024-001], Shanghai Sailing Program [19YF1448000], and the Chinese Academy of Engineering [2019-XY-33].Major National R;D Projects of the National Health Department [2018ZX10101003]; National Natural Science Foundation of China [31770161]; Shanghai Science and Technology Committee [17DZ2272900, 14495800500]; Shanghai Municipal Commission of Health and Family Planning [2017ZZ01024-001]; Shanghai Sailing Program [19YF1448000]; Chinese Academy of Engineering [2019-XY-33

    Recent Increase in the Prevalence of Fluconazole-Non-susceptible Candida tropicalis Blood Isolates in Turkey: Clinical Implication of Azole-Non-susceptible and Fluconazole Tolerant Phenotypes and Genotyping

    No full text
    WOS: 000581278900001PubMed: 33123116Candida tropicalis is the fourth leading cause of candidemia in Turkey. Although C. tropicalis isolates from 1997 to 2017 were characterized as fully susceptible to antifungals, the increasing global prevalence of azole-non-susceptible (ANS) C. tropicalis and the association between high fluconazole tolerance (HFT) and fluconazole therapeutic failure (FTF) prompted us to re-evaluate azole susceptibility of C. tropicalis in Turkey. in this study, 161 C. tropicalis blood isolates from seven clinical centers were identified by ITS rDNA sequencing, genotyped by multilocus microsatellite typing, and tested for susceptibility to five azoles, two echinocandins, and amphotericin B (AMB); antifungal resistance mechanisms were assessed by sequencing of ERG11 and FKS1 genes. the results indicated that C. tropicalis isolates, which belonged to 125 genotypes grouped into 11 clusters, were fully susceptible to echinocandins and AMB; however, 18.6% of them had the ANS phenotype but only two carried the ANS-conferring mutation (Y132F). HFT was recorded in 52 isolates, 10 of which were also ANS. Large proportions of patients infected with ANS and HFT isolates (89 and 40.7%, respectively) showed FTF. Patients infected with azole-susceptible or ANS isolates did not differ in mortality, which, however, was significantly lower for those infected with HFT isolates (P = 0.007). There were significant differences in mortality (P = 0.02), ANS (P = 0.012), and HFT (P = 0.007) among genotype clusters. the alarming increase in the prevalence of C. tropicalis blood isolates with ANS and HFT in Turkey and the notable FTF rate should be a matter of public health concern.Major National R&D Projects of the National Health Department [2018ZX10101003]; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [31770161]; Shanghai Science and Technology CommitteeShanghai Science & Technology Committee [17DZ2272900, 14495800500]; Shanghai Municipal Commission of Health and Family Planning [2017ZZ01024-001]; Shanghai Sailing Program [19YF1448000]; Chinese Academy of Engineering [2019-XY-33]This work was supported by the Major National R&D Projects of the National Health Department (2018ZX10101003), National Natural Science Foundation of China (31770161), Shanghai Science and Technology Committee (17DZ2272900 and 14495800500), Shanghai Municipal Commission of Health and Family Planning (2017ZZ01024-001), Shanghai Sailing Program (19YF1448000), and the Chinese Academy of Engineering (2019-XY-33)

    The quiet and underappreciated rise of drug-resistant invasive fungal pathogens

    Get PDF
    Human fungal pathogens are attributable to a significant economic burden and mortality worldwide. Antifungal treatments, although limited in number, play a pivotal role in decreasing mortality and morbidities posed by invasive fungal infections (IFIs). However, the recent emergence of multidrug-resistant Candida auris and Candida glabrata and acquiring invasive infections due to azole-resistant C. parapsilosis, C. tropicalis, and Aspergillus spp. in azole-naïve patients pose a serious health threat considering the limited number of systemic antifungals available to treat IFIs. Although advancing for major fungal pathogens, the understanding of fungal attributes contributing to antifungal resistance is just emerging for several clinically important MDR fungal pathogens. Further complicating the matter are the distinct differences in antifungal resistance mechanisms among various fungal species in which one or more mechanisms may contribute to the resistance phenotype. In this review, we attempt to summarize the burden of antifungal resistance for selected non-albicansCandida and clinically important Aspergillus species together with their phylogenetic placement on the tree of life. Moreover, we highlight the different molecular mechanisms between antifungal tolerance and resistance, and comprehensively discuss the molecular mechanisms of antifungal resistance in a species level.D.S.P. was funded by grant AI109025 from the National Institutes of Health, as well as from Astellas for the Perlin lab’s Reference Center for Antifungal Drug Resistance.Peer ReviewedPostprint (published version

    Incidence and spectrum of yeast species isolated from the oral cavity of Iranian patients suffering from hematological malignancies

    Get PDF
    Background: Oral candidiasis (OC) has a profound effect on the life quality of immunocompromised patients, such as those undergoing chemotherapy. Objective: Systematic investigation of clinical outcome and microbiological features of yeast isolates recovered from the oral cavity of 150 Iranian patients with hematological malignancies. Design: MALDI-TOF MS, 21-plex PCR, and rDNA sequencing were used for identification. Antifungal susceptibility testing (broth microdilution, CLSI M27-A3/S4) and genotypic diversity of yeast isolates (amplified fragment length polymorphism) were assessed. Results: Nystatin treatment resulted in 70% therapeutic failure and administration of 150 mg fluconazole (FLZ) + nystatin for patients with OC relapse showed 70% clinical failure. Previous history of OC was significantly correlated with FLZ treatment requirement and nystatin failure (P = 0.005, α < 0.05). Candida albicans (80.3%) and Kluyveromyces marxianus (C. kefyr) (12.7%) were the two most prevalent yeast species isolated. FLZ and AMB exhibited the highest geometric mean values. 21-PCR showed 98.9% agreement with MALDI-TOF MS. K. marxianus isolates had the same genotype, while C. albicans isolates grouped in 15 genotypes. Conclusions: Marked rate of therapeutic failure of nystatin necessitated OC treatment with systemic antifungals. K. marxianus was the second most prevalent yeast and 21-plex PCR could be considered as an inexpensive identification tool
    corecore