59 research outputs found

    Chameleons in imagined conversations: A new approach to understanding coordination of linguistic style in dialogs

    Full text link
    Conversational participants tend to immediately and unconsciously adapt to each other's language styles: a speaker will even adjust the number of articles and other function words in their next utterance in response to the number in their partner's immediately preceding utterance. This striking level of coordination is thought to have arisen as a way to achieve social goals, such as gaining approval or emphasizing difference in status. But has the adaptation mechanism become so deeply embedded in the language-generation process as to become a reflex? We argue that fictional dialogs offer a way to study this question, since authors create the conversations but don't receive the social benefits (rather, the imagined characters do). Indeed, we find significant coordination across many families of function words in our large movie-script corpus. We also report suggestive preliminary findings on the effects of gender and other features; e.g., surprisingly, for articles, on average, characters adapt more to females than to males.Comment: data available at http://www.cs.cornell.edu/~cristian/movie

    People on Drugs: Credibility of User Statements in Health Communities

    Full text link
    Online health communities are a valuable source of information for patients and physicians. However, such user-generated resources are often plagued by inaccuracies and misinformation. In this work we propose a method for automatically establishing the credibility of user-generated medical statements and the trustworthiness of their authors by exploiting linguistic cues and distant supervision from expert sources. To this end we introduce a probabilistic graphical model that jointly learns user trustworthiness, statement credibility, and language objectivity. We apply this methodology to the task of extracting rare or unknown side-effects of medical drugs --- this being one of the problems where large scale non-expert data has the potential to complement expert medical knowledge. We show that our method can reliably extract side-effects and filter out false statements, while identifying trustworthy users that are likely to contribute valuable medical information

    Antisocial Behavior in Online Discussion Communities

    Full text link
    User contributions in the form of posts, comments, and votes are essential to the success of online communities. However, allowing user participation also invites undesirable behavior such as trolling. In this paper, we characterize antisocial behavior in three large online discussion communities by analyzing users who were banned from these communities. We find that such users tend to concentrate their efforts in a small number of threads, are more likely to post irrelevantly, and are more successful at garnering responses from other users. Studying the evolution of these users from the moment they join a community up to when they get banned, we find that not only do they write worse than other users over time, but they also become increasingly less tolerated by the community. Further, we discover that antisocial behavior is exacerbated when community feedback is overly harsh. Our analysis also reveals distinct groups of users with different levels of antisocial behavior that can change over time. We use these insights to identify antisocial users early on, a task of high practical importance to community maintainers.Comment: ICWSM 201

    How to Ask for a Favor: A Case Study on the Success of Altruistic Requests

    Full text link
    Requests are at the core of many social media systems such as question & answer sites and online philanthropy communities. While the success of such requests is critical to the success of the community, the factors that lead community members to satisfy a request are largely unknown. Success of a request depends on factors like who is asking, how they are asking, when are they asking, and most critically what is being requested, ranging from small favors to substantial monetary donations. We present a case study of altruistic requests in an online community where all requests ask for the very same contribution and do not offer anything tangible in return, allowing us to disentangle what is requested from textual and social factors. Drawing from social psychology literature, we extract high-level social features from text that operationalize social relations between recipient and donor and demonstrate that these extracted relations are predictive of success. More specifically, we find that clearly communicating need through the narrative is essential and that that linguistic indications of gratitude, evidentiality, and generalized reciprocity, as well as high status of the asker further increase the likelihood of success. Building on this understanding, we develop a model that can predict the success of unseen requests, significantly improving over several baselines. We link these findings to research in psychology on helping behavior, providing a basis for further analysis of success in social media systems.Comment: To appear at ICWSM 2014. 10pp, 3 fig. Data and other info available at http://www.mpi-sws.org/~cristian/How_to_Ask_for_a_Favor.htm

    Tracing the Use of Practices through Networks of Collaboration

    Full text link
    An active line of research has used on-line data to study the ways in which discrete units of information---including messages, photos, product recommendations, group invitations---spread through social networks. There is relatively little understanding, however, of how on-line data might help in studying the diffusion of more complex {\em practices}---roughly, routines or styles of work that are generally handed down from one person to another through collaboration or mentorship. In this work, we propose a framework together with a novel type of data analysis that seeks to study the spread of such practices by tracking their syntactic signatures in large document collections. Central to this framework is the notion of an "inheritance graph" that represents how people pass the practice on to others through collaboration. Our analysis of these inheritance graphs demonstrates that we can trace a significant number of practices over long time-spans, and we show that the structure of these graphs can help in predicting the longevity of collaborations within a field, as well as the fitness of the practices themselves.Comment: To Appear in Proceedings of ICWSM 2017, data at https://github.com/CornellNLP/Macro
    • …
    corecore