21 research outputs found

    HRV16 Impairs Macrophages Cytokine Response to a Secondary Bacterial Trigger

    Get PDF
    Human rhinovirus is frequently seen as an upper respiratory tract infection but growing evidence proves the virus can cause lower respiratory tract infections in patients with chronic inflammatory lung diseases including chronic obstructive pulmonary disease (COPD). In addition to airway epithelial cells, macrophages are crucial for regulating inflammatory responses to viral infections. However, the response of macrophages to HRV has not been analyzed in detail. We used in vitro monocyte-derived human macrophages to study the cytokine secretion of macrophages in response to the virus. Our results showed that macrophages were competent at responding to HRV, as a robust cytokine response was detected. However, after subsequent exposure to non-typeable Haemophilus influenzae (NTHi) or to LPS, HRV-treated macrophages secreted reduced levels of pro-inflammatory or regulatory cytokines. This “paralyzed” phenotype was not mimicked if the macrophages were pre-treated with LPS or CpG instead of the virus. These results begin to deepen our understanding into why patients with COPD show HRV-induced exacerbations and why they mount a defective response toward NTHi

    Development of Core Outcome Measures sets for paediatric and adult Severe Asthma (COMSA)

    Get PDF
    BACKGROUND: Effectiveness studies with biological therapies for asthma lack standardised outcome measures. The COMSA (Core Outcome Measures sets for paediatric and adult Severe Asthma) working group sought to develop Core Outcome Measures (COM) sets to facilitate better synthesis of data and appraisal of biologics in paediatric and adult asthma clinical studies.METHODS: COMSA utilised a multi-stakeholder consensus process among patients with severe asthma, adult, and paediatric clinicians, pharmaceutical representatives and health regulators from across Europe. Evidence included a systematic review of development, validity, and reliability of selected outcome measures plus a narrative review and a pan-European survey to better understand patients' and carers' views about outcome measures. It was discussed using a modified GRADE Evidence to Decision framework. Anonymous voting was conducted using predefined consensus criteria.RESULTS: Both adult and paediatric COM sets include forced expiratory volume in 1 s (FEV1) as z scores, annual frequency of severe exacerbations and maintenance oral corticosteroid use. Additionally, the paediatric COM set includes the Paediatric Asthma Quality of Life Questionnaire, and Asthma Control Test (ACT) or Childhood-ACT while the adult COM includes the Severe Asthma Questionnaire and the Asthma Control Questionnaire-6 (symptoms and rescue medication use reported separately).CONCLUSIONS: This patient-centred collaboration has produced two COM sets for paediatric and adult severe asthma. It is expected that they will inform the methodology of future clinical trials, enhance comparability of efficacy and effectiveness of biological therapies, and help assess their socioeconomic value. COMSA will inform definitions of non-response and response to biological therapy for severe asthma.</p

    Role of CXCL13 in cigarette smoke-induced lymphoid follicle formation and chronic obstructive pulmonary disease

    No full text
    Rationale: The B cell-attracting chemokine CXCL13 is an important mediator in the formation of tertiary lymphoid organs (TLOs). Increased numbers of ectopic lymphoid follicles have been observed in lungs of patients with severe chronic obstructive pulmonary disease (COPD). However, the role of these TLOs in the pathogenesis of COPD remains unknown. Objectives: By neutralizing CXCL13 in a mouse model of chronic cigarette smoke (CS) exposure, we aimed at interrogating the link between lymphoid follicles and development of pulmonary inflammation, emphysema, and airway wall remodeling. Methods: We first quantified and localized CXCL13 in lungs of air-or CS-exposed mice and in lungs of never smokers, smokers without airflow obstruction, and patients with COPD by reverse transcriptase-polymerase chain reaction, ELISA, and immunohistochemistry. Next, CXCL13 signaling was blocked by prophylactic or therapeutic administration of anti-CXCL13 antibodies in mice exposed to air or CS for 24 weeks, and several hallmarks of COPD were evaluated. Measurements and Main Results: Both mRNA and protein levels of CXCL13 were increased in lungs of CS-exposed mice and patients with COPD. Importantly, expression of CXCL13 was observed within B-cell areas of lymphoid follicles. Prophylactic and therapeutic administration of anti-CXCL13 antibodies completely prevented the CS-induced formation of pulmonary lymphoid follicles in mice. Interestingly, absence of TLOs attenuated destruction of alveolar walls and inflammation in bronchoalveolar lavage but did not affect airway wall remodeling. Conclusions: CXCL13 is produced within lymphoid follicles of patients with COPD and is crucial for the formation of TLOs. Neutralization of CXCL13 partially protects mice against CS-induced inflammation in bronchoalveolar lavage and alveolar wall destruction

    Dynamics of IFN-β responses during respiratory viral infection: insights for therapeutic strategies

    No full text
    RATIONALE: Viral infections are major drivers of exacerbations and clinical burden in patients with asthma and COPD. IFN-β is a key component of the innate immune response to viral infection. To date studies of inhaled IFN-β treatment have not demonstrated a significant effect on asthma exacerbations. OBJECTIVES: The dynamics of exogenous IFN-β activity were investigated to inform on future clinical indications for this potential anti-viral therapy. METHODS: Monocyte-derived macrophages (MDMs), alveolar macrophages (AMs) and primary bronchial epithelial cells (PBECs) were isolated from healthy controls and COPD patients and infected with influenza virus either prior to or after IFN-β stimulation. Infection levels were measured by % nucleoprotein 1 positive (NP1+) cells using flow cytometry. Viral RNA shedding and interferon stimulated gene expression were measured by qPCR. Production of inflammatory cytokines was measured using MSD. MEASUREMENTS AND MAIN RESULTS: Adding IFN-β to MDMs, AMs and PBECs prior to, but not after, infection reduced %NP1+ cells by 85%, 56% and 66%, respectively (p&lt;0.05). Inhibition of infection lasted for 24h following removal of IFN-β and was maintained albeit reduced up to 1 week in MDMs and 72h in PBECs; this was similar between health and COPD. IFN-β did not induce inflammatory cytokine production by MDMs or PBECs but reduced influenza-induced IL-1β production by PBECs. CONCLUSIONS: In vitro modelling of IFN-β dynamics highlights the potential for intermittent prophylactic doses of exogenous IFN-β to modulate viral infection. This provides important insights to aid the future design of clinical trials of IFN-β in asthma and COPD

    Role of B cell-activating factor in chronic obstructive pulmonary disease

    No full text
    Rationale: B cell-activating factor (BAFF) plays a major role in activation of B cells and in adaptive humoral immune responses. In chronic obstructive pulmonary disease (COPD), lymphoid follicles have been associated with disease severity, and overexpression of BAFF has been demonstrated within lymphoid follicles of patients with severe COPD. Objectives: To investigate expression and localization of BAFF in the lungs of patients with COPD and to study the role of BAFF in COPD by antagonizing BAFF in a mouse model of chronic cigarette smoke (CS) exposure. Methods: We quantified and localized BAFF expression in lungs of never-smokers, smokers without COPD, and patients with COPD and in lungs of air- or CS-exposed mice by reverse-transcriptase polymerase chain reaction, ELISA, immunohistochemistry, and confocal imaging. Next, to investigate the role of BAFF in COPD, we antagonized BAFF by prophylactic or therapeutic administration of a soluble fusion protein of the BAFF-receptor, BAFFR-Fc, in mice exposed to air or CS for 24 weeks and evaluated several hallmarks of COPD and polarization of lung macrophages. Measurements and Main Results: BAFF expression was significantly increased in lungs of patients with COPD and CS-exposed mice. BAFF staining in lymphoid follicles was observed around B cells, CD4(+) cells, dendritic cells, follicular dendritic cells, and fibroblastic reticular cells. Prophylactic and therapeutic administration of BAFFR-Fc in mice reduced pulmonary B-cell numbers and prevented CS-induced formation of lymphoid follicles and increases in immunoglobulin levels. Interestingly, prophylactic BAFFR-Fc administration significantly attenuated pulmonary inflarnmation and destruction of alveolar walls. Moreover, antagonizing BAFF altered the phenotype of alveolar and interstitial macrophages. Conclusions: BAFF is significantly increased in lungs of patients with COPD and is present around both immune and stromal cells within lymphoid follicles. Antagonizing BAFF in CS-exposed mice attenuates pulmonary inflammation and alveolar destruction
    corecore