27 research outputs found

    Molecular mechanisms of PAH function in response to phenylalanine and tetrahydrobiopterin binding

    Get PDF
    Phenylketonuria (PKU) is an autosomal recessive inborn error of metabolism (IEM) caused by mutations in the phenylalanine hydroxylase (PAH) gene. The molecular mechanism underlying deficiency of the PAH protein is, in most of the cases, loss of function due to protein misfolding. PAH mutations induce disturbed oligomerisation, decreased stability and accelerated degradation of hepatic PAH, a key enzyme in phenylalanine metabolism. Since the development of a phenylalanine-restricted diet in the 1950ies, PKU is a prototype for treatable inherited diseases. About 60 years later, the natural PAH cofactor tetrahydrobiopterin (BH4) was shown to act as a pharmacological chaperone stabilising the misfolded PAH protein. In consequence, BH4 (KUVAN®) was introduced to the pharmaceutical market as an alternative treatment for BH4-responsive PAH deficiency. Therefore, PKU is also regarded as a prototype for a pharmacologically treatable protein misfolding disease. Despite the progress in PKU therapy, knowledge on the molecular basis of PKU and the BH4 mode of action was still incomplete. Biochemical and biophysical characterisation of purified variant PAH proteins, which were derived from patient’s mutations, aimed at a better understanding of the molecular mechanisms of PAH loss of function. We showed that local side-chain replacements induce global conformational changes with negative impact on molecular motions that are essential for physiological enzyme function. The development of a continuous real-time fluorescence-based assay of PAH activity allowed for robust analysis of steady state kinetics and allosteric behaviour of recombinantly expressed PAH proteins. We identified positive cooperativity of the PAH enzyme towards BH4, where cooperativity does not rely on the presence of phenylalanine but is determined by activating conformational rearrangements. In vivo investigations on the mode-of-action of BH4 revealed differences in pharmacodynamics but not in pharmacokinetics between different strains of PAH-deficient mice (wild-type, Pahenu1/1 and Pahenu1/2). These observations pointed to a significant impact of the genotype on responsiveness to BH4. The available database information on PAH function associated with PAH mutations was based on non-standardised enzyme activity assays performed in different cellular systems and under different conditions usually focusing on single PAH mutations. These inconsistent data on PAH enzyme activity hindered robust prediction of the patient’s phenotype. Furthermore, assays on single PAH mutations do not reflect the high allelic and phenotypic heterogeneity of PKU with 89 % of patients being compound heterozygotes. In addition, the knowledge on enzyme function and regulation in the therapeutic and pathologic metabolic context was still scarce. In order to get more insight into the interplay of the PAH genotype, the phenylalanine concentration and BH4 treatment, we performed functional analyses of both, single, purified PAH variants as well as PAH full genotypes in the physiological, pathological and therapeutic context. The analysis of PAH activity as a function of phenylalanine and BH4 concentrations enabled determination of the optimal working ranges of the enzyme and visualisation of differences in the regulation of PAH activity by BH4 and phenylalanine depending on the underlying genotype. Moreover, these PAH activity landscapes allowed for setting rules for dietary regimens and pharmacological treatment based on the genotype of the patient. Taken together, precise knowledge on the mechanism of the misfolding-induced loss of function in PAH deficiency enabled a better understanding of the molecular mode of action of pharmacological rescue of enzyme function by BH4. We implemented the combination of genotype-specific functional analyses together with biochemical, clinical and therapeutic data of individual patients as a powerful tool for phenotype prediction and paved the way for personalised medicine strategies in phenylketonuria

    Molecular mechanisms of PAH function in response to phenylalanine and tetrahydrobiopterin binding

    Get PDF
    Phenylketonuria (PKU) is an autosomal recessive inborn error of metabolism (IEM) caused by mutations in the phenylalanine hydroxylase (PAH) gene. The molecular mechanism underlying deficiency of the PAH protein is, in most of the cases, loss of function due to protein misfolding. PAH mutations induce disturbed oligomerisation, decreased stability and accelerated degradation of hepatic PAH, a key enzyme in phenylalanine metabolism. Since the development of a phenylalanine-restricted diet in the 1950ies, PKU is a prototype for treatable inherited diseases. About 60 years later, the natural PAH cofactor tetrahydrobiopterin (BH4) was shown to act as a pharmacological chaperone stabilising the misfolded PAH protein. In consequence, BH4 (KUVAN®) was introduced to the pharmaceutical market as an alternative treatment for BH4-responsive PAH deficiency. Therefore, PKU is also regarded as a prototype for a pharmacologically treatable protein misfolding disease. Despite the progress in PKU therapy, knowledge on the molecular basis of PKU and the BH4 mode of action was still incomplete. Biochemical and biophysical characterisation of purified variant PAH proteins, which were derived from patient’s mutations, aimed at a better understanding of the molecular mechanisms of PAH loss of function. We showed that local side-chain replacements induce global conformational changes with negative impact on molecular motions that are essential for physiological enzyme function. The development of a continuous real-time fluorescence-based assay of PAH activity allowed for robust analysis of steady state kinetics and allosteric behaviour of recombinantly expressed PAH proteins. We identified positive cooperativity of the PAH enzyme towards BH4, where cooperativity does not rely on the presence of phenylalanine but is determined by activating conformational rearrangements. In vivo investigations on the mode-of-action of BH4 revealed differences in pharmacodynamics but not in pharmacokinetics between different strains of PAH-deficient mice (wild-type, Pahenu1/1 and Pahenu1/2). These observations pointed to a significant impact of the genotype on responsiveness to BH4. The available database information on PAH function associated with PAH mutations was based on non-standardised enzyme activity assays performed in different cellular systems and under different conditions usually focusing on single PAH mutations. These inconsistent data on PAH enzyme activity hindered robust prediction of the patient’s phenotype. Furthermore, assays on single PAH mutations do not reflect the high allelic and phenotypic heterogeneity of PKU with 89 % of patients being compound heterozygotes. In addition, the knowledge on enzyme function and regulation in the therapeutic and pathologic metabolic context was still scarce. In order to get more insight into the interplay of the PAH genotype, the phenylalanine concentration and BH4 treatment, we performed functional analyses of both, single, purified PAH variants as well as PAH full genotypes in the physiological, pathological and therapeutic context. The analysis of PAH activity as a function of phenylalanine and BH4 concentrations enabled determination of the optimal working ranges of the enzyme and visualisation of differences in the regulation of PAH activity by BH4 and phenylalanine depending on the underlying genotype. Moreover, these PAH activity landscapes allowed for setting rules for dietary regimens and pharmacological treatment based on the genotype of the patient. Taken together, precise knowledge on the mechanism of the misfolding-induced loss of function in PAH deficiency enabled a better understanding of the molecular mode of action of pharmacological rescue of enzyme function by BH4. We implemented the combination of genotype-specific functional analyses together with biochemical, clinical and therapeutic data of individual patients as a powerful tool for phenotype prediction and paved the way for personalised medicine strategies in phenylketonuria

    Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria

    Get PDF
    Background: In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. Methods: A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Results: Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. Conclusions: The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria

    Mapping the functional landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in phenylketonuria

    Get PDF
    Background: In phenylketonuria, genetic heterogeneity, frequent compound heterozygosity, and the lack of functional data for phenylalanine hydroxylase genotypes hamper reliable phenotype prediction and individualised treatment. Methods: A literature search revealed 690 different phenylalanine hydroxylase genotypes in 3066 phenylketonuria patients from Europe and the Middle East. We determined phenylalanine hydroxylase function of 30 frequent homozygous and compound heterozygous genotypes covering 55% of the study population, generated activity landscapes, and assessed the phenylalanine hydroxylase working range in the metabolic (phenylalanine) and therapeutic (tetrahydrobiopterin) space. Results: Shared patterns in genotype-specific functional landscapes were linked to biochemical and pharmacological phenotypes, where (1) residual activity below 3.5% was associated with classical phenylketonuria unresponsive to pharmacological treatment; (2) lack of defined peak activity induced loss of response to tetrahydrobiopterin; (3) a higher cofactor need was linked to inconsistent clinical phenotypes and low rates of tetrahydrobiopterin response; and (4) residual activity above 5%, a defined peak of activity, and a normal cofactor need were associated with pharmacologically treatable mild phenotypes. In addition, we provide a web application for retrieving country-specific information on genotypes and genotype-specific phenylalanine hydroxylase function that warrants continuous extension, updates, and research on demand. Conclusions: The combination of genotype-specific functional analyses with biochemical, clinical, and therapeutic data of individual patients may serve as a powerful tool to enable phenotype prediction and to establish personalised medicine strategies for dietary regimens and pharmacological treatment in phenylketonuria

    The interplay between genotype, metabolic state and cofactor treatment governs phenylalanine hydroxylase function and drug response

    Get PDF
    The discovery of a pharmacological treatment for phenylketonuria (PKU) raised new questions about function and dysfunction of phenylalanine hydroxylase (PAH), the enzyme deficient in this disease. To investigate the interdependence of the genotype, the metabolic state (phenylalanine substrate) and treatment (BH4 cofactor) in the context of enzyme function in vitro and in vivo, we (i) used a fluorescence-based method for fast enzyme kinetic analyses at an expanded range of phenylalanine and BH4 concentrations, (ii) depicted PAH function as activity landscapes, (iii) retraced the analyses in eukaryotic cells, and (iv) translated this into the human system by analyzing the outcome of oral BH4 loading tests. PAH activity landscapes uncovered the optimal working range of recombinant wild-type PAH and provided new insights into PAH kinetics. They demonstrated how mutations might alter enzyme function in the space of varying substrate and cofactor concentrations. Experiments in eukaryotic cells revealed that the availability of the active PAH enzyme depends on the phenylalanine-to-BH4 ratio. Finally, evaluation of data from BH4 loading tests indicated that the patient's genotype influences the impact of the metabolic state on drug response. The results allowed for visualization and a better understanding of PAH function in the physiological and pathological state as well as in the therapeutic context of cofactor treatment. Moreover, our data underscore the need for more personalized procedures to safely identify and treat patients with BH4-responsive PAH deficienc

    Glutaryl-CoA dehydrogenase misfolding in glutaric acidemia type 1

    Get PDF
    Glutaric acidemia type 1 (GA1) is a neurotoxic metabolic disorder due to glutaryl-CoA dehydrogenase (GCDH) deficiency. The high number of missense variants associated with the disease and their impact on GCDH activity suggest that disturbed protein conformation can affect the biochemical phenotype. We aimed to elucidate the molecular basis of protein loss of function in GA1 by performing a parallel analysis in a large panel of GCDH missense variants using different biochemical and biophysical methodologies. Thirteen GCDH variants were investigated in regard to protein stability, hydrophobicity, oligomerization, aggregation, and activity. An altered oligomerization, loss of protein stability and solubility, as well as an augmented susceptibility to aggregation were observed. GA1 variants led to a loss of enzymatic activity, particularly when present at the N-terminal domain. The reduced cellular activity was associated with loss of tetramerization. Our results also suggest a correlation between variant sequence location and cellular protein stability (p < 0.05), with a more pronounced loss of protein observed with variant proximity to the N-terminus. The broad panel of variant-mediated conformational changes of the GCDH protein supports the classification of GA1 as a protein-misfolding disorder. This work supports research toward new therapeutic strategies that target this molecular disease phenotype

    Efficacy and safety of obinutuzumab-chlorambucil combination in the frontline treatment of elderly patients with chronic lymphocytic leukemia and comorbidities : real‑life data from Polish Adult Leukemia Group (PALG) analysis

    Get PDF
    Fludarabine- or bendamustine‑based upfront immunochemotherapy is the current standard of care in fit patients with chronic lymphocytic leukemia (CLL). These regimens are poorly tolerated by patients with comorbidities, for whom the obinutuzumab-chlorambucil combination became the recommended first‑line treatment. We aimed to analyze real‑life experience with the obinutuzumab-chlorambucil combination as the frontline treatment in elderly and unfit patients. The retrospective analysis included 86 elderly patients (median age, 74 years) with CLL and a significant burden of comorbidities, treated with obinutuzumab-chlorambucil as the frontline regimen. All patients had a Cumulative Illness Rating Scale score greater than 6 and/or creatinine clearance of 30 to 69 ml/min. Overall response rate at 2 months after treatment completion was 95.3%, with complete remission (CR) rate of 43% and partial remission (PR) rate of 52.3%. Stable disease rate was 4.7%. Progressive disease was not observed after treatment completion. The median progression‑free survival (PFS) was not reached after a median follow‑up of 18 months; estimated PFS at 30 months was 62%. We observed 6 relapses (7%), 3 (3.5%) in patients obtaining CR, and 3 (3.5%) in those with PR after immunochemotherapy. The most frequent adverse events were neutropenia and infusion‑related reactions (IRRs). Grade-3 neutropenia occurred in 11.6% of patients, and grade-3 IRRs, in 2.3%. There were no adverse events of grade 4 or 5. Our data confirm that the obinutuzumab-chlorambucil combination is an effective and well‑tolerated regimen in untreated CLL patients with comorbidities

    Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo

    Get PDF
    The recent approval of sapropterin dihydrochloride, the synthetic form of 6[R]-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4), for the treatment of phenylketonuria (PKU) as the first pharmacological chaperone drug initiated a paradigm change in the treatment of monogenetic diseases. Symptomatic treatment is now replaced by a causal pharmacological therapy correcting misfolding of the defective phenylalanine hydroxylase (PAH) in numerous patients. Here, we disclose BH4 responsiveness in Pahenu1, a mouse model for PAH deficiency. Loss of function resulted from loss of PAH, a consequence of misfolding, aggregation, and accelerated degradation of the enzyme. BH4 attenuated this triad by conformational stabilization augmenting the effective PAH concentration. This led to the rescue of the biochemical phenotype and enzyme function in vivo. Combined in vitro and in vivo analyses revealed a selective pharmaceutical action of BH4 confined to the pathological metabolic state. Our data provide new molecular-level insights into the mechanisms underlying protein misfolding with loss of function and support a general model of pharmacological chaperone-induced stabilization of protein conformation to correct this intracellular phenotype. Pahenu1 will be essential for pharmaceutical drug optimization and to design individually tailored therapie

    Inkluzja społeczna w czasie wolnym, czyli o niepełnosprawnych i ich wykluczeniu

    No full text

    Активные формы противостояния социальному исключению

    No full text
    W artykule poruszony został problem wykluczenia społecznego w kontekście powrotu na rynek pracy. Punktem wyjścia jest brak możliwości aktywizowania osób wykluczonych poprzez ofertę pomocy społecznej. Podkreśla się także skutki uboczne, których doświadczają jej podopieczni: bierność, dziedziczenie stylu życia z zasiłków socjalnych oraz brak motywacji do integra-cji ze środowiskiem lokalnym. Wytyczne co do kierunków polityk społecznych w ramach unijnego modelu rozwoju sprawiły, że polityka społeczna, a w szczególności tzw. polityka aktywizacji poszukuje metod przeciwdziałania tym patologiom. Poprzez włączenie podmiotów ekonomii społecznej i sektora pozarządowego do realizacji zadań na płaszczyźnie pomocy społecznej powstała szansa odejścia od traktowania jej jako instytucji transferów socjalnych. Powstała wielosektorowa pomoc społeczna oparta na trzech filarach: opiekuńczym (tradycyjnym), prozatrudnieniowym i reintegracyjnym, który realizowany jest poprzez tworzenie instytucji zatrudnienia socjalnego. Nowy system zakłada warunkowanie pomocy. W artykule zaprezentowano podstawowe dane dotyczące potencjału zatrudnienia socjalnego oraz beneficjentów korzystających z aktywizujących form wychodzenia z wykluczenia. Zwrócono uwagę, że podstawowym problemem w procesie aktywizacji osób długotrwale bezrobotnych jest bardzo niska skuteczność i bardzo znikomy efekt zatrudnieniowy po ukończeniu kursu. Kwestia ta ukazana jest z dwóch perspektyw: ilościowej – za pomocą wskaźników statystycznych i jakościowej – określenie motywacji do podejmowania aktywności. Obraz statystyczny dają wartości dwóch wskaźników: ukończenia zajęć reintegracji społeczno-zawodowej i ekonomicznego usamodzielnienia się. Perspektywa jakościowa opiera się na ukazaniu (na podstawie wyników badań sondażowych) postaw klientów pomocy społecznej wobec aktywizacji społeczno-zawodowej, motywów podejmowania działania oraz wizję podejmowanych w przyszłości form pracy zarobkowej.The article touched a problem of social exclusion in the context of the return to the labor market. The starting point is the lack of activation of people excluded by social assistance. It also stresses the side effects experienced by its protégés: passivity, inheritance lifestyle based on social benefits and lack of motivation to integrate with the local community. The guidelines for the directions of social policies within the EU development model meant that social policy, in particular the socalled activation policy seeks methods to counteract these pathologies. By incorporating social economy entities and non-governmental sector to carry out tasks at the level of social assistance it was given the chance to depart from treating social assistance as an institution of social transfers. Created multisectorial social assistance is based on three pillars: welfare (traditional), pro-employment and reintegration, which is implemented through the creation of social employment institutions. The new system involves conditioning aid. The article presents the basic data of the social employment and its beneficiaries. It should be noted that the main problem in the process of activation of the long-term unemployed is very low effectiveness and a very marginal effect of their employment after completing the course. This issue is shown from two perspectives: quantitative – with statistical indicators and qualitative – determination motivation to undertake the activity. There is a statistical picture of two indicators: the completion of training and economic independence. The qualitative perspective is based on the results of surveys dedicated to the theme of client’s attitudes to social and economic activation and their work in the future
    corecore