81 research outputs found

    Nanocellulose-polypyrrole-coated paperboard for food packaging application

    Get PDF
    Currently, studies on packaging that improves the shelf life of perishable food while reducing the waste that is produced upon disposal are encouraged. Thus, exploration of the property improvement of paperboard (Pb) packaging is of interest since this type of packaging is biodegradable and recyclable. This work emphasizes the added value of (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidized cellulose nanofibres (TOCN) and polypyrrole (PPy) coating on such paperboard. The mechanical properties and reduced gas permeability of the coated paperboard (CPb) were significantly improved due to the dense network formed by TOCN and polypyrrole particles. These results suggest that surface coating by polypyrrole particles may be utilized for the manufacture of multilayer paperboard containers in industrial applications to reduce packaging waste generated by the often added conventional plastic. © 2018 Elsevier B.V

    Conductive nanocomposites based on TEMPO-oxidized cellulose and poly(N-3-aminopropylpyrrole-co-pyrrole)

    Get PDF
    In this paper, conductive composite films were synthetized based on oxidized cellulosic nanofibres (CNFo), 1-(2-cyanoethyl)pyrrole and pyrrole. The 1-(2-cyanoethyl)pyrrole was reduced into N-(3-aminopropyl)pyrrole before being grafted on carboxyl groups of CNFo. Oxidative polymerization of polypyrrole (Ppy) was conducted in an iron(III) chloride (FeCl3) solution, onto the N-(3-aminopropyl)pyrrole grafted. The resulting composite films were characterized by FTIR-ATR Spectroscopy, scanning electron microscopy (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX), tensile strength measurement, thermogravimetric analysis (TGA), wettability and electrical conductivity measurements. The grafting of 1-(2-cyanoethyl)pyrrole played a leading role in improving these properties by increasing potential connections between chains of conducting polymer and cellulose fibres. The outcomes show that the PPy nanoparticles coating on the grafted films increase a lot of characteristics of our composite such as wettability, mechanical properties, thermal protection and more importantly the electrical conductivity which was improved by a 10E5 factor in comparison to the uncoated films. In this condition, this nanostructure could be considered in the design of high-performance electrodes for supercapacitor, battery and sensor applications. © 2016 Elsevier B.V

    Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite

    Get PDF
    In this study, a composite film based on TEMPO-oxidized cellulose nanofibers (TOCN), polyvinyl alcohol (PVA) and polypyrrole (PPy) was synthesized in situ by a chemical polymerization, resulting in the induced absorption of PPy on the surface of the TOCN. The composite films were investigated with scanning electron microscopy, thermogravimetric analysis, contact angle measurements, mechanical tests, and evaluation of antibacterial properties. The developed composite has nearly identical Young modulus (3.4 GPa), elongation (2.6%) and tensile stress (about 51 MPa) to TOCN even if PPy, which as poor properties by itself, was incorporated. From the energy-dispersive X-ray spectroscopy (EDX) results, it was shown that PPy is mainly located on the composite surface. Results confirmed by an increase from 54.5 to 83° in contact angle, an increased heat protection (Thermogravimetric analysis) and a decrease in surface energy. The nanocomposites were also evaluated for antibacterial activity against bacteria occasionally found in food: Gram-positive Bacillus subtilis (B. subtilis) and Gram-negative bacteria Escherichia coli (E. coli). The results indicate that the nanocomposites are effective against all of the bacteria studied as shown by the decrease of 5.2 log colony forming units (CFU) for B. subtilis and 6.5 log CFU for E. coli. Resulting in the total destruction of the studied bacteria. The perfect match between the resulting inhibition zone and the composite surface area has demonstrated that our composite was contact active with a slight leaching of PPy. Our composite was successful as an active packaging on meat (liver) as bacteria were killed by contact, thereby preventing the spread of possible diseases. While it has not been tested on bacteria found in medicine, TOCN/PVA-PPy film may be able to act as an active sterile packaging for surgical instruments. © 2016 Elsevier B.V

    Polypyrrole/nanocellulose composite for food preservation: barrier and antioxidant characterization

    Get PDF
    When food cannot be consumed immediately after production, food packaging must create a protective atmosphere around the food product. The packaging must improve the shelf life of perishable foods and protect the food from dirt, dust, oxygen, light, pathogenic microorganisms, and moisture by acting as an effective barrier to moisture, gases (CO2 and O2) or even by possessing antimicrobial properties. However, extending the shelf life and enhancing food quality while reducing packaging waste is encouraged. The exploration of new bio-based packaging materials, such as TEMPO-oxidize nanofibrillated cellulose (TOCN), has increased due to its biodegradable and renewable character. This work emphasizes the antioxidant activity and high barrier properties against the diffusion of oxygen, carbon dioxide and water vapor from a nanocomposite based on polypyrrole (PPy) and TOCN, as well as its biodegradability for food packaging applications. The preparation, characterization and application of the nanocomposite in food packaging are discussed. © 2017 Elsevier Lt

    Safety Profile of Good Manufacturing Practice Manufactured Interferon \u3b3-Primed Mesenchymal Stem/Stromal Cells for Clinical Trials

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) are widely studied by both academia and industry for a broad array of clinical indications. The collective body of data provides compelling evidence of the clinical safety of MSC therapy. However, generally accepted proof of therapeutic efficacy has not yet been reported. In an effort to generate a more effective therapeutic cell product, investigators are focused on modifying MSC processing protocols to enhance the intrinsic biologic activity. Here, we report a Good Manufacturing Practice-compliant two-step MSC manufacturing protocol to generate MSCs or interferon \u3b3 (IFN\u3b3) primed MSCs which allows freshly expanded cells to be infused in patients on a predetermined schedule. This protocol eliminates the need to infuse cryopreserved, just thawed cells which may reduce the immune modulatory activity. Moreover, using (IFN\u3b3) as a prototypic cytokine, we demonstrate the feasibility of priming the cells with any biologic agent. We then characterized MSCs and IFN\u3b3 primed MSCs prepared with our protocol, by karyotype, in vitro potential for malignant transformation, biodistribution, effect on engraftment of transplanted hematopoietic cells, and in vivo toxicity in immune deficient mice including a complete post-mortem examination. We found no evidence of toxicity attributable to the MSC or IFN\u3b3 primed MSCs. Our data suggest that the clinical risk of infusing MSCs or IFN\u3b3 primed MSCs produced by our two-step protocol is not greater than MSCs currently in practice. While actual proof of safety requires phase I clinical trials, our data support the use of either cell product in new clinical studies

    The attitudes of brain cancer patients and their caregivers towards death and dying: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Much money and energy has been spent on the study of the molecular biology of malignant brain tumours. However, little attention has been paid to the wishes of patients afflicted with these incurable tumours, and how this might influence treatment considerations.</p> <p>Methods</p> <p>We interviewed 29 individuals – 7 patients dying of a malignant brain tumor and 22 loved ones. One-on-one interviews were conducted according to a pre-designed interview guide. A combination of open-ended questions, as well as clinical scenarios was presented to participants in order to understand what is meaningful and valuable to them when determining treatment options and management approaches. The results were analyzed, coded, and interpreted using qualitative analytic techniques in order to arrive at several common overarching themes.</p> <p>Results</p> <p>Seven major themes were identified. In general, respondents were united in viewing brain cancer as unique amongst malignancies, due in large part to the premium placed on mental competence and cognitive functioning. Importantly, participants found their experiences, however difficult, led to the discovery of inner strength and resilience. Responses were usually framed within an interpersonal context, and participants were generally grateful for the opportunity to speak about their experiences. Attitudes towards religion, spirituality, and euthanasia were also probed.</p> <p>Conclusion</p> <p>Several important themes underlie the experiences of brain cancer patients and their caregivers. It is important to consider these when managing these patients and to respect not only their autonomy but also the complex interpersonal toll that a malignant diagnosis can have.</p

    Technology in Parkinson's disease:challenges and opportunities

    Get PDF
    The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. © 2016 International Parkinson and Movement Disorder Society

    Exploring dietitians' salient beliefs about shared decision-making behaviors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shared decision making (SDM), a process by which health professionals and patients go through the decision-making process together to agree on treatment, is a promising strategy for promoting diet-related decisions that are informed and value based and to which patients adhere well. The objective of the present study was to identify dietitians' salient beliefs regarding their exercise of two behaviors during the clinical encounter, both of which have been deemed essential for SDM to take place: (1) presenting patients with all dietary treatment options for a given health condition and (2) helping patients clarify their values and preferences regarding the options.</p> <p>Methods</p> <p>Twenty-one dietitians were allocated to four focus groups. Facilitators conducted the focus groups using a semistructured interview guide based on the Theory of Planned Behavior. Discussions were audiotaped, transcribed verbatim, coded, and analyzed with NVivo8 (QSR International, Cambridge, MA) software.</p> <p>Results</p> <p>Most participants stated that better patient adherence to treatment was an advantage of adopting the two SDM behaviors. Dietitians identified patients, physicians, and the multidisciplinary team as normative referents who would approve or disapprove of their adoption of the SDM behaviors. The most often reported barriers and facilitators for the behaviors concerned patients' characteristics, patients' clinical situation, and time.</p> <p>Conclusions</p> <p>The implementation of SDM in nutrition clinical practice can be guided by addressing dietitians' salient beliefs. Identifying these beliefs also provides the theoretical framework needed for developing a quantitative survey questionnaire to further study the determinants of dietitians' adoption of SDM behaviors.</p

    Omega-3 PUFA metabolism and brain modifications during aging

    Get PDF
    In Canada, 5.5 million (16% of Canadians) adults are >65 years old and projections suggest this number will be approximately 20% of Canadians by 2024. A major concern regarding old age is a decline in health, especially if this entails a loss of self-sufficiency and independence caused by a decline in cognition. The brain contains 60% of fat and is one of the most concentrated organs in long chain omega-3 fatty acids such as docosahexaenoic acid (DHA). During aging, there are physiological modifications in the metabolism of lipids that could also have consequences on brain structure and levels of DHA. This review will hence discuss the physiological modifications in the metabolism of lipids during aging with a focus on long chain omega-3 and omega-6 fatty acids and also outline the structural and functional modifications of the brain during aging including brain lipid modifications and its relation to higher levels of DHA and cognition. Therefore, in this review, we outline the importance of collecting more data on the biology of aging since it might highly improve our understanding about what are «normal» modifications occurring during aging and what can become pathological
    • …
    corecore