758 research outputs found

    Network connectivity during mergers and growth: optimizing the addition of a module

    Full text link
    The principal eigenvalue λ\lambda of a network's adjacency matrix often determines dynamics on the network (e.g., in synchronization and spreading processes) and some of its structural properties (e.g., robustness against failure or attack) and is therefore a good indicator for how ``strongly'' a network is connected. We study how λ\lambda is modified by the addition of a module, or community, which has broad applications, ranging from those involving a single modification (e.g., introduction of a drug into a biological process) to those involving repeated additions (e.g., power-grid and transit development). We describe how to optimally connect the module to the network to either maximize or minimize the shift in λ\lambda, noting several applications of directing dynamics on networks.Comment: 7 pages, 5 figure

    Predicting Crystal Structures with Data Mining of Quantum Calculations

    Full text link
    Predicting and characterizing the crystal structure of materials is a key problem in materials research and development. It is typically addressed with highly accurate quantum mechanical computations on a small set of candidate structures, or with empirical rules that have been extracted from a large amount of experimental information, but have limited predictive power. In this letter, we transfer the concept of heuristic rule extraction to a large library of ab-initio calculated information, and demonstrate that this can be developed into a tool for crystal structure prediction.Comment: 4 pages, 3 pic

    Social Climber attachment in forming networks produces phase transition in a measure of connectivity

    Full text link
    Formation and fragmentation of networks is typically studied using percolation theory, but most previous research has been restricted to studying a phase transition in cluster size, examining the emergence of a giant component. This approach does not study the effects of evolving network structure on dynamics that occur at the nodes, such as the synchronization of oscillators and the spread of information, epidemics, and neuronal excitations. We introduce and analyze new link-formation rules, called Social Climber (SC) attachment, that may be combined with arbitrary percolation models to produce a previously unstudied phase transition using the largest eigenvalue of the network adjacency matrix as the order parameter. This eigenvalue is significant in the analyses of many network-coupled dynamical systems in which it measures the quality of global coupling and is hence a natural measure of connectivity. We highlight the important self-organized properties of SC attachment and discuss implications for controlling dynamics on networks.Comment: 6 pages, 4 figure

    Performance of the LHCb muon system with cosmic rays

    Full text link
    The LHCb Muon system performance is presented using cosmic ray events collected in 2009. These events allowed to test and optimize the detector configuration before the LHC start. The space and time alignment and the measurement of chamber efficiency, time resolution and cluster size are described in detail. The results are in agreement with the expected detector performance.Comment: Submitted to JINST and accepte

    Performance of the LHCb muon system

    Full text link
    The performance of the LHCb Muon system and its stability across the full 2010 data taking with LHC running at ps = 7 TeV energy is studied. The optimization of the detector setting and the time calibration performed with the first collisions delivered by LHC is described. Particle rates, measured for the wide range of luminosities and beam operation conditions experienced during the run, are compared with the values expected from simulation. The space and time alignment of the detectors, chamber efficiency, time resolution and cluster size are evaluated. The detector performance is found to be as expected from specifications or better. Notably the overall efficiency is well above the design requirementsComment: JINST_015P_1112 201

    Measurement of {\eta} meson production in {\gamma}{\gamma} interactions and {\Gamma}({\eta}-->{\gamma}{\gamma}) with the KLOE detector

    Get PDF
    We present a measurement of {\eta} meson production in photon-photon interactions produced by electron-positron beams colliding with \sqrt{s}=1 GeV. The measurement is done with the KLOE detector at the \phi-factory DA{\Phi}NE with an integrated luminosity of 0.24 fb^{-1}. The e^+e^- --> e^+e^-{\eta} cross section is measured without detecting the outgoing electron and positron, selecting the decays {\eta}-->{\pi}^+{\pi}^-{\pi}^0 and {\eta}-->{\pi}^0{\pi}^0{\pi}^0. The most relevant background is due to e^+e^- --> {\eta}{\gamma} when the monochromatic photon escapes detection. The cross section for this process is measured as {\sigma}(e^+e^- -->{\eta}{\gamma}) = (856 \pm 8_{stat} \pm 16_{syst}) pb. The combined result for the e^+e^- -->e^+e^-{\eta} cross section is {\sigma}(e^+e^- -->e^+e^-{\eta}) = (32.72 \pm 1.27_{stat} \pm 0.70_{syst}) pb. From this we derive the partial width {\Gamma}({\eta}-->{\gamma}{\gamma}) = (520 \pm 20_{stat} \pm 13_{syst}) eV. This is in agreement with the world average and is the most precise measurement to date.Comment: Version accepted by JHE

    Measurement of \Gamma(\eta -> \pi^+\pi^-\gamma)/\Gamma(\eta -> \pi^+\pi^-\pi^0) with the KLOE Detector

    Full text link
    The ratio R_{\eta}=\Gamma(\eta -> \pi^+\pi^-\gamma)/\Gamma(\eta -> \pi^+\pi^-\pi^0) has been measured by analyzing 22 million \phi \to \eta \gamma decays collected by the KLOE experiment at DA\PhiNE, corresponding to an integrated luminosity of 558 pb^{-1}. The \eta \to \pi^+\pi^-\gamma proceeds both via the \rho resonant contribution, and possibly a non-resonant direct term, connected to the box anomaly. Our result, R_{\eta}= 0.1856\pm 0.0005_{stat} \pm 0.0028_{syst}, points out a sizable contribution of the direct term to the total width. The di-pion invariant mass for the \eta -> \pi^+\pi^-\gamma decay could be described in a model-independent approach in terms of a single free parameter, \alpha. The determined value of the parameter \alpha is \alpha = (1.32 \pm 0.08_{stat} +0.10/-0.09_{syst}\pm 0.02_{theo}) GeV^{-2}Comment: Paper in press, accepted by PL

    A new limit on the CP violating decay KS -> 3pi0 with the KLOE experiment

    Full text link
    We have carried out a new direct search for the CP violating decay KS -> 3pi0 with 1.7 fb^-1 of e+e- collisions collected by the KLOE detector at the phi-factory DAFNE. We have searched for this decay in a sample of about 5.9 x 10^8 KS KL events tagging the KS by means of the KL interaction in the calorimeter and requiring six prompt photons. With respect to our previous search, the analysis has been improved by increasing of a factor four the tagged sample and by a more effective background rejection of fake KS tags and spurious clusters. We find no candidates in data and simulated background samples, while we expect 0.12 standard model events. Normalizing to the number of KS -> 2pi0 events in the same sample, we set the upper limit on BR(KS -> 3pi0 < 2.6 x 10^-8 at 90% C.L., five times lower than the previous limit. We also set the upper limit on the eta_000 parameter, |eta_000 | < 0.0088 at 90% C.L., improving by a factor two the latest direct measurement.Comment: Accepted for publication in Physics Letters B (15 pages, 13 figures

    Precision measurement of σ(e+eπ+πγ)/σ(e+eμ+μγ)\sigma(e^+e^-\rightarrow\pi^+\pi^-\gamma)/\sigma(e^+e^-\rightarrow \mu^+\mu^-\gamma) and determination of the π+π\pi^+\pi^- contribution to the muon anomaly with the KLOE detector

    Full text link
    We have measured the ratio σ(e+eπ+πγ)/σ(e+eμ+μγ)\sigma(e^+e^-\rightarrow\pi^+\pi^-\gamma)/\sigma(e^+e^-\rightarrow \mu^+\mu^-\gamma), with the KLOE detector at DAΦ\PhiNE for a total integrated luminosity of \sim 240 pb1^{-1}. From this ratio we obtain the cross section σ(e+eπ+π)\sigma(e^+e^-\rightarrow\pi^+\pi^-). From the cross section we determine the pion form factor Fπ2|F_\pi|^2 and the two-pion contribution to the muon anomaly aμa_\mu for 0.592<Mππ<0.9750.592<M_{\pi\pi}<0.975 GeV, Δππaμ\Delta^{\pi\pi} a_\mu= (385.1±1.1stat±2.7sys+theo)×1010({\rm 385.1\pm1.1_{stat}\pm2.7_{sys+theo}})\times10^{-10}. This result confirms the current discrepancy between the Standard Model calculation and the experimental measurement of the muon anomaly.Comment: 18 pages, 8 figures, minor text corrections, one table added, version to appear on Physics Letters
    corecore