4 research outputs found

    Responding to Cholera Outbreaks in Zimbabwe: Building Resilience over Time

    Get PDF
    Cholera is still a major cause of disease epidemics in sub-Saharan Africa (SSA). During the period January 2017–March 2018, 15 countries in the WHO African Region (AFR) reported cholera outbreaks of varying magnitudes. Zimbabwe has experienced cholera outbreaks dating as far back as 1971 with an unprecedented outbreak occurring in 2008/2009 when 60 of the 62 districts in the country were affected. The outbreak was declared over in May 2009 and by then, 98,592 cases and 4288 deaths had been reported. In Zimbabwe, outbreaks have occurred against a backdrop of a struggling economy and a weak health system. The role of a resilient health system in emergencies response is accentuated premised on experiences from the Ebola outbreak that largely affected three countries in West Africa. Amidst economic and persistent system wide challenges faced by Zimbabwe, preparedness and response capacity has been built over the years. This is evidenced by the rapid response and containment of the recent cholera outbreak. Skilled and equipped rapid response teams, strengthened surveillance and maintaining high alert, effective multisectoral collaboration and high level political engagement are among the critical elements that have built resilience

    Understanding the Effects of Both CD14-Mediated Innate Immunity and Device/Tissue Mechanical Mismatch in the Neuroinflammatory Response to Intracortical Microelectrodes

    Get PDF
    Intracortical microelectrodes record neuronal activity of individual neurons within the brain, which can be used to bridge communication between the biological system and computer hardware for both research and rehabilitation purposes. However, long-term consistent neural recordings are difficult to achieve, in large part due to the neuroinflammatory tissue response to the microelectrodes. Prior studies have identified many factors that may contribute to the neuroinflammatory response to intracortical microelectrodes. Unfortunately, each proposed mechanism for the prolonged neuroinflammatory response has been investigated independently, while it is clear that mechanisms can overlap and be difficult to isolate. Therefore, we aimed to determine whether the dual targeting of the innate immune response by inhibiting innate immunity pathways associated with cluster of differentiation 14 (CD14), and the mechanical mismatch could improve the neuroinflammatory response to intracortical microelectrodes. A thiol-ene probe that softens on contact with the physiological environment was used to reduce mechanical mismatch. The thiol-ene probe was both softer and larger in size than the uncoated silicon control probe. Cd14-/- mice were used to completely inhibit contribution of CD14 to the neuroinflammatory response. Contrary to the initial hypothesis, dual targeting worsened the neuroinflammatory response to intracortical probes. Therefore, probe material and CD14 deficiency were independently assessed for their effect on inflammation and neuronal density by implanting each microelectrode type in both wild-type control and Cd14-/- mice. Histology results show that 2 weeks after implantation, targeting CD14 results in higher neuronal density and decreased glial scar around the probe, whereas the thiol-ene probe results in more microglia/macrophage activation and greater blood–brain barrier (BBB) disruption around the probe. Chronic histology demonstrate no differences in the inflammatory response at 16 weeks. Over acute time points, results also suggest immunomodulatory approaches such as targeting CD14 can be utilized to decrease inflammation to intracortical microelectrodes. The results obtained in the current study highlight the importance of not only probe material, but probe size, in regard to neuroinflammation

    Genomic epidemiology and the role of international and regional travel in the SARS-CoV-2 epidemic in Zimbabwe: a retrospective study of routinely collected surveillance data.

    Get PDF
    BACKGROUND: Advances in SARS-CoV-2 sequencing have enabled identification of new variants, tracking of its evolution, and monitoring of its spread. We aimed to use whole genome sequencing to describe the molecular epidemiology of the SARS-CoV-2 outbreak and to inform the implementation of effective public health interventions for control in Zimbabwe. METHODS: We performed a retrospective study of nasopharyngeal samples collected from nine laboratories in Zimbabwe between March 20 and Oct 16, 2020. Samples were taken as a result of quarantine procedures for international arrivals or to test for infection in people who were symptomatic or close contacts of positive cases. Samples that had a cycle threshold of less than 30 in the diagnostic PCR test were processed for sequencing. We began our analysis in July, 2020 (120 days since the first case), with a follow-up in October, 2020 (at 210 days since the first case). The phylogenetic relationship of the genome sequences within Zimbabwe and global samples was established using maximum likelihood and Bayesian methods. FINDINGS: Of 92 299 nasopharyngeal samples collected during the study period, 8099 were PCR-positive and 328 were available for sequencing, with 156 passing sequence quality control. 83 (53%) of 156 were from female participants. At least 26 independent introductions of SARS-CoV-2 into Zimbabwe in the first 210 days were associated with 12 global lineages. 151 (97%) of 156 had the Asp614Gly mutation in the spike protein. Most cases, 93 (60%), were imported from outside Zimbabwe. Community transmission was reported 6 days after the onset of the outbreak. INTERPRETATION: Initial public health interventions delayed onset of SARS-CoV-2 community transmission after the introduction of the virus from international and regional migration in Zimbabwe. Global whole genome sequence data are essential to reveal major routes of spread and guide intervention strategies. FUNDING: WHO, Africa CDC, Biotechnology and Biological Sciences Research Council, Medical Research Council, National Institute for Health Research, and Genome Research Limited.WHO, Africa CDC, Biotechnology and Biological Sciences Research Council, Medical Research Council, National Institute for Health Research, and Genome Research Limite
    corecore