5 research outputs found

    Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia – An integrated approach using remote sensing and tree-ring data

    Get PDF
    Climate change is predicted to affect tree growth due to increased frequency and intensity of extreme events such as ice storms, droughts and heatwaves. Yet, there is still a lot of uncertainty on how trees respond to an increase in frequency of extreme events. Use of both ground-based wood increment (i.e. ring width) and remotely sensed data (i.e. vegetation indices) can be used to scale-up ground measurements, where there is a link between the two, but this has only been demonstrated in a few studies. We used tree-ring data together with crown features derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess the effect of extreme climate events on the growth of beech (Fagus sylvatica L.) in Slovenia. We found evidence that years with climate extremes during the growing season (drought, high temperatures) had a lower ring width index (RWI) but we could not find such evidence for the remotely sensed EVI (Enhanced Vegetation Index). However, when assessing specific events where leaf burning or wilting has been reported (e.g. August 2011) we did see large EVI anomalies. This implies that the impact of drought or heatwave events cannot be captured by EVI anomalies until physical damage on the canopy is caused. This also means that upscaling the effect of climate extremes on RWI by using EVI anomalies is not straightforward. An exception is the 2014 ice storm that caused a large decline in both RWI and EVI. Extreme climatic parameters explained just a small part of the variation in both RWI and EVI by, which could indicate an effect of other climate variables (e.g. late frost) or biotic stressors such as insect outbreaks. Furthermore, we found that RWI was lower in the year after a climate extreme occurred in the late summer. Most likely due to the gradual increase in temperature and more frequent drought we found negative trends in RWI and EVI. EVI maps could indicate where beech is sensitive to climate changes and could be used for planning mitigation interventions. Logical next steps should focus on a tree-based understanding of the short -and long-term effects of climate extremes on tree growth and survival, taking into account differential carbon allocation to the crown (EVI) and to wood-based variables. This research highlights the value of an integrated approach for upscaling tree-based knowledge to the forest level

    Variation in aboveground biomass in forests and woodlands in Tanzania along gradients in environmental conditions and human use

    No full text
    Disturbed African tropical forests and woodlands have the potential to contribute to climate change mitigation. Therefore, there is a need to understand how carbon stocks of disturbed and recovering tropical forests are determined by environmental conditions and human use. In this case study, we explore how gradients in environmental conditions and human use determine aboveground biomass (AGB) in 1958 national forest inventory (NFI) plots located in forests and woodlands in mainland Tanzania. Plots were divided into recovering forests (areas recovering from deforestation for <25years) and established forests (areas consistently defined as forests for ≥25 years). This division, as well as the detection of year of forest establishment, was obtained through the use of dense satellite time series of forest cover probability. In decreasing order of importance, AGB in recovering forests unexpectedly decreased with water availability, increased with surrounding tree cover and time since establishment, and decreased with elevation, distance to roads, and soil phosphorus content. AGB in established forests unexpectedly decreased with water availability, increased with surrounding tree cover, and soil nitrogen content, and decreased with elevation. AGB in recovering forests increased by 0.4 Mg ha−1yr−1 during the first 20 years following establishment. Our results can serve as the basis of carbon sink estimates in African recovering tropical forests and woodlands, and aid in forest landscape restoration planning

    Quellen- und Literaturverzeichnis

    No full text
    corecore