13 research outputs found

    Enzymatic Synthesis of Ampicillin: Nonlinear Modeling, Kinetics Estimation, and Adaptive Control

    Get PDF
    Nowadays, the use of advanced control strategies in biotechnology is quite low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of bioprocesses. The nonlinearity of the bioprocesses and the absence of cheap and reliable instrumentation require an enhanced modeling effort and identification strategies for the kinetics. The present work approaches modeling and control strategies for the enzymatic synthesis of ampicillin that is carried out inside a fed-batch bioreactor. First, a nonlinear dynamical model of this bioprocess is obtained by using a novel modeling procedure for biotechnology: the bond graph methodology. Second, a high gain observer is designed for the estimation of the imprecisely known kinetics of the synthesis process. Third, by combining an exact linearizing control law with the on-line estimation kinetics algorithm, a nonlinear adaptive control law is designed. The case study discussed shows that a nonlinear feedback control strategy applied to the ampicillin synthesis bioprocess can cope with disturbances, noisy measurements, and parametric uncertainties. Numerical simulations performed with MATLAB environment are included in order to test the behavior and the performances of the proposed estimation and control strategies

    Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    No full text
    Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies

    Robust Moving Horizon State Estimation: Application to Bioprocesses

    No full text
    International audienceIn this paper, a robust nonlinear receding-horizon observer is proposed for the estimation of cellular concentration in a bioreactor. In the presence of uncertainties on the model parameter or on the initial state of the system, this estimation problem can lead to poor estimation performance. A min-max optimization solution can be used to increase the robustness of the observer in the presence of parameter uncertainties. This solution assumes that each model parameter belongs to an interval. The paper proposes an alternative modeling for these parameters: A Gaussian model is assumed in order to take into account the correlation between parameters. As the confidence region for the parameters is now an ellipsoid, the max step in the min-max problem is replaced by more tractable statistics. Expected value has been tested for its simplicity. For robustness requirements a statistic considering the variance of the estimation has also been developed. Numerical simulations illustrate the efficiency of the proposed estimation scheme

    Robust Nonlinear Model Predictive Controller Based on Sensitivity Analysis - Application to a Continuous Photobioreactor

    No full text
    International audienceThis paper deals with the design of a predictive control law for microalgae culture process to regulate the biomass concentration at a chosen setpoint. However, the performances of the Nonlinear Model Predictive Controller usually decrease when the true plant evolution deviates significantly from that predicted by the model. Thus, a robust criterion under model's parameter uncertainties is considered, implying solving a min-max optimization problem. In order to reduce the computational burden and complexity induced by this formulation, a sensitivity functions analysis is carried out to determine the most influential parameters which will be considered in the optimization step. The proposed approach is validated in simulation and numerical results are given to illustrate its efficiency for setpoint tracking in the presence of parameter uncertainties

    Microbial production of enzymes: Nonlinear state and kinetic reaction rates estimation

    No full text
    International audienceThe nonlinearity of the biotechnological processes and the absence of cheap and reliable instrumentation require an enhanced modelling effort and estimation strategies for the state and the kinetic parameters. This work approaches nonlinear estimation strategies for microbial production of enzymes, exemplified by using a process of lipase production from olive oil by Candida rugosa. First, by using a dynamical mathematical model of this process, an asymptotic observer which reconstructs the unavailable state variables is proposed. The design of this kind of observers is based on mass and energy balances without the knowledge of kinetics being necessary; only minimal information concerning the measured concentrations is used. Second, a nonlinear high-gain observer is designed for the estimation of imprecisely known kinetics of the bioprocess. An important advantage of this high-gain estimator is that the tuning is reduced to the calibration of a single parameter. Numerical simulations in various scenarios are provided in order to test the behaviour and performances of the proposed nonlinear estimation strategies
    corecore