10,242 research outputs found

    The structure and fate of white dwarf merger remnants

    Full text link
    We present a large parameter study where we investigate the structure of white dwarf (WD) merger remnants after the dynamical phase. A wide range of WD masses and compositions are explored and we also probe the effect of different initial conditions. We investigated the degree of mixing between the WDs, the conditions for detonations as well as the amount of gas ejected. We find that systems with lower mass ratios have more total angular momentum and as a result more mass is flung out in a tidal tail. Nuclear burning can affect the amount of mass ejected. Many WD binaries that contain a helium-rich WD achieve the conditions to trigger a detonation. In contrast, for carbon-oxygen transferring systems only the most massive mergers with a total mass above ~2.1 solar masses detonate. Even systems with lower mass may detonate long after the merger if the remnant remains above the Chandrasekhar mass and carbon is ignited at the centre. Finally, our findings are discussed in the context of several possible observed astrophysical events and stellar systems, such as hot subdwarfs, R Coronae Borealis stars, single massive white dwarfs, supernovae of type Ia and other transient events. A large database containing 225 white dwarf merger remnants is made available via a dedicated web page.Comment: 23 pages, 15 figures, submitted to MNRAS. A database containing 225 WD merger remnants is available for download at http://www.hs.uni-hamburg.de/DE/Ins/Per/Dan/wdwd_remnants.htm

    High spatial resolution studies of galaxies in the far IR: Observations with the KAO, and the promise of SOFIA

    Get PDF
    NASA, in collaboration with the West German Science Ministry (BMFT), plans a larger airborne telescope as a successor to the Kuipper Airborne Observatory (KAO) that will achieve these goals. The Stratospheric Observatory for Infrared Astronomy (SOFIA) is entering the final stages of Phase B review with targeted new start early in the next decade. SOFIA is a 2.7 m diameter telescope that is carried in a Boeing 747SP. In addition to having 3 times the spatial resolution of the KAO, and 10 times the light gathering power, it will incorporate improvements over the KAO in lower optical emissivity and better telescope tracking stability. The thin primary mirror will equilibrate quickly to ambient temperature at an altitude which, accompanied by airflow improvements across the telescope cavity, will result in better image quality. The sensitivity of SOFIA will allow us to see a large number of typical bright galactic HII regions in local group galaxies. The spatial resolution of 8 seconds (full width half maximum Airy disk) at 100 microns will allow these regions to be measured independently, if they are distributed similarly to those in our own galaxy. At this spatial resolution, the disks of normal galaxies will be easily resolved out to distances of several hundred Mpc. This portion of space includes many of the superluminous galaxies discovered by the Infrared Astronomy Satellite (IRAS), and this spatial scale is relevant for studies of the morphology of regions of interaction among the majority of these galaxies that are members of colliding pairs

    Cooperative Stimulation of Dendritic Cells by Cryptococcus neoformans Mannoproteins and CpG Oligodeoxynucleotides

    Get PDF
    While mannosylation targets antigens to mannose receptors on dendritic cells (DC), the resultant immune response is suboptimal. We hypothesized that the addition of toll-like receptor (TLR) ligands would enhance the DC response to mannosylated antigens. Cryptococcus neoformans mannoproteins (MP) synergized with CpG-containing oligodeoxynucleotides to stimulate enhanced production of proinflammatory cytokines and chemokines from murine conventional and plasmacytoid DC. Synergistic stimulation required the interaction of mannose residues on MP with the macrophage mannose receptor (MR), CD206. Moreover, synergy with MP was observed with other TLR ligands, including tripalmitoylated lipopeptide (Pam3CSK4), polyinosine-polycytidylic acid (pI:C), and imiquimod. Finally, CpG enhanced MP-specific MHC II-restricted CD4+ T-cell responses by a mechanism dependent upon DC expression of CD206 and TLR9. These data suggest a rationale for vaccination strategies that combine mannosylated antigens with TLR ligands and imply that immune responses to naturally mannosylated antigens on pathogens may be greatly augmented if TLR and MR are cooperatively stimulated.National Institutes of Health (RO1 AI25780, RO1 AI37532, K08 AI 53542

    Prospects For Detecting Dark Matter With Neutrino Telescopes In Light Of Recent Results From Direct Detection Experiments

    Full text link
    Direct detection dark matter experiments, lead by the CDMS collaboration, have placed increasingly stronger constraints on the cross sections for elastic scattering of WIMPs on nucleons. These results impact the prospects for the indirect detection of dark matter using neutrino telescopes. With this in mind, we revisit the prospects for detecting neutrinos produced by the annihilation of WIMPs in the Sun. We find that the latest bounds do not seriously limit the models most accessible to next generation kilometer-scale neutrino telescopes such as IceCube. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes still have the opportunity to play an important as well as complementary role in the search for particle dark matter.Comment: 13 pages, 6 figure

    High spatial resolution 100 micron observations of the M83 bar

    Get PDF
    A program of high spatial resolution far-infrared observations of galaxies using the Kuiper Airborne Observatory (KAO), was conducted to better understand the role of star formation, the general interstellar radiation field, and non-thermal activity in powering the prodigious far-infrared luminosities seen in spiral and interacting galaxies. Here, researchers present observations of the central region of the well-known barred spiral M83 (NGC 5236). The resultant channel 3 scans for M83 and IRC + 10216, after co-addition and smoothing, are shown. These data show that M83 is extended at 100 microns compared to a point source. A simple Gaussian deconvolution of the M83 data with the point source profile from IRC+10216 gives a full width half maximum (FWHM) of about 19 seconds for M83. By comparison with IRC+10216, researchers obtain a flux for the unresolved component in M83 of about 110 Jy. This is about 1/6 the total flux for M83 (Rice et al. 1988) and about 1/2 the PSC flux. The M83 and IRC+10216 profiles in the cross-scan direction (SE-NW) were also compared, and show that M83 is extended in this direction as well, with a width of about 18 seconds. A comparison of the different channel profiles for M83 and IRC+10216 shows that there is an asymmetry in the M83 data, in that the maximum in the profiles shifts from southeast to northwest as channel number increases. This corresponds to the extension in the bar seen in the CO data. Thus the far-infrared emission in the central region of M83 tends to trace the CO bar. The new 100 micron data is also compared with previous H alpha observations from the literature, to determine how well the far-infrared traces the stellar structure, the star formation as measured by H alpha, and the optical colors

    Supersymmetric reduced models with a symmetry based on Filippov algebra

    Full text link
    Generalizations of the reduced model of super Yang-Mills theory obtained by replacing the Lie algebra structure to Filippov nn-algebra structures are studied. Conditions for the reduced model actions to be supersymmetric are examined. These models are related with what we call \{cal N}_{min}=2 super pp-brane actions.Comment: v3: In the previous versions we overlooked that Eq.(3.9) holds more generally, and missed some supersymmetric actions. Those are now included and modifications including a slight change in the title were made accordingly. 1+18 page

    Design Crash Cushion Using Waste Tire for Toll Plaza Barrier

    Get PDF
    Nowadays, there are many victims of accidents at toll plazas spread in the daily newspaper. Based on the severed incident, there are many humans died and seriously injured. Thus, accidents at the toll plaza is the main cause of this study. Besides that, one of the factor that cause the accident is the barrier systems such as crash block that made from concrete preferred the safety of the workers where they protect the vulnerable from harm tollbooth violations from the vehicle. This study aimed to design a crash cushion to be placed in front of crash block. In this study, waste tires are used as material crash cushion. The waste tires is used in this study because its can reduced envirnmental pollution and its also can counter the requirements of rubber demand. Moreover, the waste tires has been cut and crushed into fine powder using a Crusher Machine. Then, the waste tires is routed to make the crash cushion. Actually, a main process of producing the crash cushion is injection moulding process. In addition, this process has been studied to get more information about the flow process in producing the crash cushion. Furthermore, samples of prototype will be made to show the real view crash cushion. Other than that, results from the test data will be recorded in order to make this study qualified in the future

    CoGeNT, DAMA, and Light Neutralino Dark Matter

    Get PDF
    Recent observations by the CoGeNT collaboration (as well as long standing observations by DAMA/LIBRA) suggest the presence of a ∼5\sim 5-10 GeV dark matter particle with a somewhat large elastic scattering cross section with nucleons (σ∼10−40\sigma\sim 10^{-40} cm2^2).Within the context of the minimal supersymmetric standard model (MSSM), neutralinos in this mass range are not able to possess such large cross sections, and would be overproduced in the early universe. Simple extensions of the MSSM, however, can easily accommodate these observations. In particular, the extension of the MSSM by a chiral singlet superfield allows for the possibility that the dark matter is made up of a light singlino that interacts with nucleons largely through the exchange of a fairly light (∼\sim30-70 GeV) singlet-like scalar higgs, \hi. Such a scenario is consistent with all current collider constraints and can generate the signals reported by CoGeNT and DAMA/LIBRA. Furthermore, there is a generic limit of the extended model in which there is a singlet-like pseudoscalar higgs, \ai, with \mai\sim \mhi and in which the χ0χ0\chi^0\chi^0 and b\anti b, s\anti s coupling magnitudes of the \hi and \ai are very similar. In this case, the thermal relic abundance is automatically consistent with the measured density of dark matter if \mchi is sufficiently small that \chi^0\chi^0\to b\anti b is forbidden.Comment: 6 pages, published versio
    • …
    corecore