64 research outputs found

    Laser pulse control of a Q-switched Nd:YVO<sub>4</sub> bounce geometry laser using a secondary cavity

    No full text
    Pulsed laser operation is desirable for a wide range of applications such as laser micromachining in industrial manufacturing and laser marking for product identification. In these cases it is beneficial to have flexibility in the parameters of the laser pulse to suit the specific application. This can include the ability to achieve a wide range of pulse repetition rates, with some applications requiring variation of laser pulse rate from high rate (multi-kHz) to low rate or even an off-state in a fast timescale. To generate ultrahigh pulse rates requires Q-switched lasers with ultrahigh gain, but problems can arise if the modulation element is insufficient to prevent laser action or hold-off lasing at low repetition rates. In these cases, lasing output can occur when it is not desired. In this work we present a novel method for pulse control in a high gain bounce amplifier Q-switched system by using a secondary cavity to clamp the gain and allow for clean single pulse operation from very high (800kHz) to very low (e.g.1kHz) repetition rates

    Pump-induced lensing effects in diode pumped Alexandrite lasers

    Get PDF
    It is essential to understand the pump-induced lensing and aberration effects in solid-state lasers, such as Alexandrite, since these set limits on laser power scaling whilst maintaininghigh spatial TEM00beam quality. In this work, we present direct wavefront measurements ofpump-induced lensing and spherical aberration using a Shack-Hartmann wavefront sensor, for thefirst time, in a diode-pumped Alexandrite laser, and under both non-lasing and lasing conditions.The lens dioptric power is found to be weakly sub-linear with respect to the absorbed pumppower, and under lasing, the lensing power is observed to decrease to60 %of its non-lasingvalue. The results are inconsistent with a thermal lens model but a fuller theoretical formulationis made of a combined thermal and population lens model giving good quantitative agreementto the observed pump power dependence of the induced-lensing under non-lasing conditionsand the reduced lensing under lasing conditions. The deduced value for the difference inexcited to ground state polarizability is consistent with prior measurement estimates for otherchromium-doped gain media. The finding of this paper provide new insight into pump-inducedlensing in Alexandrite and also provides a basis for a fast saturable population lens mechanism toaccount for self-Q-switching observed recently in Alexandrite laser systems

    Alexandrite lasers with blue-diode-pumping

    Get PDF
    The availability of high-power and high-brightness blue diode lasers makes them attractive as low-cost pump sources for broadly tunable Alexandrite lasers. In this paper we investigate the performance of an Alexandrite laser pumped by a high-power fiber-delivered blue diode module. Output power 1.84 W is achieved, the highest power from blue diode pumped Alexandrite to date. Excellent pump absorption is demonstrated of scrambled pump polarization on both a-axis and b-axis of Alexandrite crystal. Wavelength tuning and dual wavelength operation is produced using the self-birefringent filtering of the Brewster-cut Alexandrite crystal. An analysis is made of laser efficiency and mode formation including the creation of higher-order Laguerre-Gaussian vortex modes (LG01 and LG02). Performance is compared to red diode pumping and prospects for further optimization and power-scaling are discussed

    Nature of intensity and phase modulations in stimulated Brillouin scattering

    Get PDF
    The nature of stimulated Brillouin scattering (SBS) temporal modulations for a focused beam in a finite-length cell with homogeneous medium is examined numerically. The finite phonon lifetime produces deterministic oscillations at the threshold while the inclusion of the random noise as an initiation source of SBS leads to stochastic fluctuations in Stokes intensity and phase. A unified study of both modulations under different parameters is presented. The results indicate a large useful parameter space for excellent Stokes beam quality.Shahraam Afshaarvahid, Vladimyros Devrelis, and Jesper Munc

    Vortex mode transformation interferometry

    Get PDF
    Whilst many techniques exist for generation of an optical vortex, there remains a need for new devices and methods that can also provide vortex generation withhigher powers, greater flexibility of wavelength, and generation beyondthe lowest-order Laguerre-Gaussian 01modeto address a broader range of practical applications.This work revealshow an all-mirror based interferometricmode transformation system can provide these propertiesincludingrevealing, for the first time,the generation ofa much richer set of vortex mode patterns than might have been thought possible previously.Anew developed theoreticalformulation, confirmed with excellent agreement by experimental demonstrationsin an imbalanced Sagnac interferometer,showsinterferometric transformation is possible for all orders of Laguerre-Gaussian 0modes into a rich set of high quality higher-order vortex and vortex superposition. The interferometric approachis shown to be configurabletoincrease or decrease vorticity. The new mathematical formulation provides the ability to perform a fullmodal power analysis of both the mode-transformed transmitted vortex and the complementary reflected beam at the Sagnac beamsplitter port.A discussion is made on the origin of the orbital angular momentum transferred to the vortex output from the Sagnac beamsplitter

    Continuous wave holographic laser resonators using degenerate four-wave mixing in a diode bar side-pumped Nd:YVO<sub>4</sub> amplifier

    No full text
    Degenerate four-wave mixing techniques used to produce self-adaptive laser resonators based on diffraction from a gain grating have shown considerable promise for correction of distortion in high-average-power solid-state laser systems, as well as for spectral and temporal control of the laser radiation [1-4]. In these systems, the gain grating is formed by spatial hole burning caused by interference of coherent beams in the laser amplifier and modulation of the population inversion. The gain grating formation can be used for phase conjugation by using the amplifier in a four-wave mixing geometry [2], for self-pumped phase conjugation by using an input beam in a self-intersecting loop geometry [3] and for formation of a self-starting adaptive oscillator by providing additional feedback from an output coupler and requiring no external optical input. Experimental demonstrations have been performed successfully in several laser systems including flashlamp-pumped and quasi-c.w. pumped neodymium-doped amplifiers [1,2], in laser-pumped titanium-doped sapphire [4] and CO2 lasers. We present for the first time, demonstration of a continuous-wave self-adaptive holographic laser resonator. The operation is based on the very high reflectivities (&gt;800%) [5] and more recently (&gt;10,000%) of a gain grating formed in a diode-bar side-pumped Nd:YVO4 amplifier. We have subsequently modelled the FWM interactions and have found good agreement with experimental results. This resonator has been shown to correct for severe phase distortions introduced inside the loop. An output of ~1 W has so far been achieved, future steps include an additional power amplifier incorporated into the resonator loop geometry to give an expected multi-watt operation with a midterm goal of 10 W

    Tunable, dual wavelength and self-Q-switched Alexandrite laser using crystal birefringence control

    No full text
    We present a red-diode-pumped Alexandrite laser with continuous wavelength tunability, dual wavelength and self-Q-switching in an ultra-compact resonator containing only the gain medium. Wavelength tuning is obtained by varying the geometrical path length and birefringence by tilting a Brewster-cut Alexandrite crystal. Two crystals from independent suppliers are used to demonstrate and compare the performance. Wavelength tuning between 750 and 764 nm is demonstrated in the first crystal and between 747 and 768 nm in the second crystal. Stable dual wavelength operation is also obtained in both crystals with wavelength separation determined by the crystal free spectral range. Temperature tuning was also demonstrated to provide finer wavelength tuning at a rate of −0.07 nm K −1. Over a narrow tuning range, stable self-Q-switching is observed with a pulse duration of 660 ns at 135 kHz, which we believe is the highest Q-switched pulse rate in Alexandrite to date. Theoretical modelling is performed showing good agreement with the wavelength tuning and dual wavelength results

    Non-astigmatic Alexandrite ring laser design with wavelength-tunable single-longitudinal-mode operation

    Get PDF
    This work presents a study of a fully nonastigmatic design of a single-longitudinal-mode, wavelength-tunable, unidirectional alexandrite ring laser cavity and assessment of its performance compared to more complex laser design requiring astigmatism compensation. A “displaced mode” nonastigmatic laser cavity design eliminating astigmatic cavity elements is developed around an alexandrite crystal end-pumped by a low-brightness, high-power red diode laser pump system. Single-longitudinal-mode, continuous-wave operation is demonstrated with output power of 700 mW with an excellent TEM00 mode (M2<1.1) across a wide pump power range. Wavelength tuning from 748–773 nm is produced using a birefringent filter plate. The nonastigmatic alexandrite laser design achieves better spatial quality and resilience to maintain TEM00 operation across wide variation in pump-induced lensing compared to the astigmatic design. To the best of our knowledge, this is the first wavelength-tunable, single-longitudinal-mode operation of a unidirectional alexandrite ring system in a fully nonastigmatic cavity regime

    High-energy diode-pumped alexandrite amplifier development with applications in satellite-based lidar

    No full text
    Efficient, wavelength-tunable diode-pumped alexandrite laser systems offer the potential for a more versatile, satellite-based lidar source compared to fixed wavelength Nd:YAG systems and non-space compliant lamp-pumped alexandrite. In this paper, we develop a strategy to enable the high-energy operation required for atmospheric lidar based on an efficient diode-pumped Master-Oscillator Power-Amplifier (MOPA) system design. A novel multi-pass ‘diamond’ slab amplifier geometry is introduced alongside the experimental results of the world’s first diode-pumped alexandrite amplifier producing a gain of 2.13 in a demonstration system. A diode-pumped Q-switched alexandrite oscillator is presented with a record-highest pulse energy of 3.80 mJ. Detailed optimisation of a two-stage amplifier design is studied numerically and maximised with temperature, wavelength and pump pulse duration to produce 50 mJ pulse energy. This forms part of an optimised alexandrite MOPA design capable of high pulse energy, showing the future potential of diode pumped alexandrite for satellite-based atmospheric lidar
    • 

    corecore