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Abstract
Whilst many techniques exist for generation of an optical vortex, there remains a need for new
devices and methods that can also provide vortex generation with higher powers, greater
flexibility of wavelength, and generation beyond the lowest-order Laguerre–Gaussian LG01

mode to address a broader range of practical applications. This work reveals how an all-mirror
based interferometric mode transformation system can provide these properties including
revealing, for the first time, the generation of a much richer set of vortex mode patterns than
might have been thought possible previously. A new developed theoretical formulation,
confirmed with excellent agreement by experimental demonstrations in an imbalanced Sagnac
interferometer, shows interferometric transformation is possible for all orders of Laguerre–
Gaussian LG l0 modes into a rich set of high quality higher-order vortex and vortex superposition.
The interferometric approach is shown to be configurable to increase or decrease vorticity. The
new mathematical formulation provides the ability to perform a full modal power analysis of
both the mode-transformed transmitted vortex and the complementary reflected beam at the
Sagnac beamsplitter (BS) port. A discussion is made on the origin of the orbital angular
momentum transferred to the vortex output from the Sagnac BS.

Keywords: optical vortex, interferometry, optical modes

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical beams with a zero intensity phase singularity sur-
rounded by a spiral variation of phase has attracted con-
siderable interest especially since the recognition by Allen
et al in 1992 [1] that such structured light beams carry orbital
angular momentum. Due to this latter property, these light
structures have been called vortex beams and have been used
in a number of applications including optical manipulation
[2, 3], optical communications [4], and laser manufacturing
[5, 6]. There are many methods to generate an optical vortex
including spiral phase plate [7], q-plate [8], spatial light
modulator (SLM) [9], digital micro-mirror device (DMD)
[10], and cylindrical lens pair [11]. There are some limitations
in each of these techniques. One issue is the poor power-
handling capability of some of these devices e.g. due to
absorption and heating that degrades performance, or will

even result in permanent damage, in SLMs, DMDs and
q-plates. Another issue is the bespoke manufactured fixed
plate devices such as spiral phase plates or q-plates will only
operate well at their specific design wavelength. A further
issue is the high cost of some of these devices, e.g. a high
efficiency SLM (~$20 000), or a fixed plate device, particu-
larly if needing bespoke manufacture at a non-standard
wavelength. High costs will prohibit or limit commercial
implementation of vortex technology in price-sensitive
applications.

It was recently shown that a Sagnac interferometer can
also be used as an effective technique for transforming a
Gaussian mode into a single-charge vortex [12, 13]. Based on
a beamsplitter (BS) and simple set of mirrors, a Sagnac
interferometer provides a valuable alternative technique for
vortex generation. It uses only high-power handling optics as
used standardly in high-power lasers, hence, with due care
with the input mode size, it should be possible to operate with
input power from multi-Watt to multi-kilowatt, and in con-
tinuous wave mode and Q-switched and mode-locked pulsed
mode using mirror coatings with low loss and low absorption
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that are commercially available. The Sagnac interferometer,
unlike fixed plate devices, can operate over a broadband of
wavelengths and over the electromagnetic spectrum limited
only by mirror coating technology. Using standard mirror
technology, as used by the laser source itself, the Sagnac
interferometer provides an off-the-shelf availability and low
cost implementation.

In the work of this paper, a new general theoretical for-
mulation is made of interferometry-based spatial mode
transformations. The implementation of this focuses on using
an imbalanced Sagnac interferometer but is not limited to it,
as the same transformations can be achieved in other inter-
ferometer configurations. However, as a common-path inter-
ferometer, the Sagnac allows vortex generation with an
inherent robustness against environmental and mechanical
perturbations and, most specifically, automatically achieving
the required destructive interference condition at its trans-
mission port. Our new formulation shows that not only can a
Sagnac interferometer convert a Gaussian beam into a
Laguerre–Gaussian LG01 vortex mode with controlled hand-
edness of vorticity but we show, for the first time to the best
of our knowledge, that any input Laguerre–Gaussian LG l0

vortex mode with radial index p=0 can be transformed. We
show that they can be increased in vorticity and transformed
into a set of higher-order vortex mode superposition or
decreased in vorticity with conversion into a -LG l1, 1 mode
with vorticity index l decreased by a single unit and radial
index increased to p=1. A full modal analysis is presented
of the transmitted and reflected mode powers and a discussion
made on the origin of imparted orbital angular momentum
from the interferometer.

An experimental demonstration is made of interfero-
metric transformation of higher order vortex modes, for the
first time. This is performed with a power transformation
fraction of 30%; however, we note that if the interferometer
were instead incorporated as a laser output coupler where the
unconverted light is recycled back into the laser cavity [14]
the conversion fraction automatically approaches 100%. The
experimental results show excellent agreement with the
theoretical analysis and predictions and demonstrate the high
quality and robust nature of the vortex generation. The vortex
superposition can be generated with multiple-singularities that
also rapidly rotate as they pass through a focus (due to dif-
ferent Gouy phase shifts of the superposed modes). These
could provide new potential well structures (with dynamical
rotation through the focus) for single and multiple particle
optical trapping, rotation and levitation [15], as well as
resources for metrology, laser processing at high powers, and
potential to provide non-separable or entangled states for
quantum technologies at low photon number.

2. Theory of mode transformation with a Sagnac
interferometer

We consider a Sagnac interferometer system as shown in
figure 1 with a thin-film non-polarising BS and three mirrors
(M1–M2–M3) arranged in a planar ring configuration (with

plane normal in the y-direction). An incident optical field
= w - Re Ee ei t kz̲ ( ) ̲( )  with angular frequency ω, wavenumber

p l=k 2 ,/ wavelength l, complex field amplitude E, and
polarisation state e̲ (which we take as linear polarised
throughout this analysis) is split into clockwise +E and
anticlockwise -E field amplitudes at the BS. When perfectly
aligned to follow the same ring path these fields coherently
recombine at the BS to give a transmitted field =Et

+ ¢ = -tt rr Ee tt rr EeikL ikLR R( ) ( ) and a reflected field
= ¢ +E rt rt Eer

ikLR( ) where t and r are the field transmission
and reflectivity of the incident light field at the BS (from air to
glass), ¢t and ¢r are the values from the reverse direction at the
BS (from glass to air), and LR is the optical path length of the
ring. The sign convention used ¢ = -r r results from the π

phase shift at the glass to air interface but the destructive
interference condition for the transmitted ring components is
valid for any non-absorbing BS. The two ring field compo-
nents interfere destructively at the transmission port and
constructively at the reflection port. This interference condi-
tion is independent of wavelength l and the ring path length
LR since these are identical for the two ring directions due the
common-path nature of the Sagnac interferometer. This is a
useful property of the Sagnac interferometer providing
insensitively to mechanical or environmental path length
perturbations and allows operation even with spectrally
broadband fields or ultrashort pulses with low temporal
coherence.

For a 50% BS ( =r t), the transmitted field Et is zero and
all the return light goes into reflected field =E E.r However,
if there is an asymmetry between the relative clockwise and
anticlockwise beam paths the two fields returning to the BS
are unbalanced and a non-zero resultant transmitted field

= -+ -E T E T E e1 2t
ikLR[ ( ) ( )]/ can be created where T E( )

are the asymmetric spatial transformations of the field in the

Figure 1. Schematic of an optical field E incident on a Sagnac
interferometer formed by a beamsplitter (BS) and a set of mirrors
(M1–M2–M3) creating a resultant transmitted output field Et and a
reflected field Er.
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two ring directions. The corresponding reflected field =Er

++ -T E T E e1 2 .ikLR[ ( ) ( )]/

It has been shown that by destructively interfering two
Gaussian beams with relative shear displacement in one axis (y)
and with a relative angular offset in the orthogonal axis (x) it is
possible to generate a vortex beam [13]. The destructive inter-
ference is automatically and robustly achieved in the transmission
port of the Sagnac interferometer of figure 1. The shear trans-
formation can be perform by vertically tilting mirrors M1 and M3
in opposite directions by an equal amount to create relative
upwards and downwards out-of-plane small displacements dy

and the angular transformation by rotating mirror M2 in the
horizontal axis to create the in-plane small angular offsets q x

between the two opposite ring directions [16]. This procedure for
the Sagnac interferometer creates the asymmetric transformations

T E( ) for the fields in the two opposite ring directions.
For the analysis, we take the displacement and angle

combination q+ -dy x,( ) in the (clockwise) beam experien-
cing two BS transmissions tt( ) and the opposite combination

q- +dy x,( ) in the (anticlockwise) beam experiencing two BS
reflections ¢rr( ) that interfere to give the transmitted output
E x y, .t ( ) Other cases will be discussed later. We consider a
general input field with complex amplitude E x y,( ) and the
Sagnac transmitted and reflected fields for the case of a 50%
BS with small angular offset ( q x) are given by

= - - +q q+ -E E x y d e E x y d e a
1

2
, , , 1t y

ik x
y

ik xx x[ ( ) ( ) ] ( )

= - + +q q+ -E E x y d e E x y d e b
1

2
, , . 1r y

ik x
y

ik xx x[ ( ) ( ) ] ( )

For simplicity of notation the common ring phase factor
eikLR has been dropped but can easily be re-incorporated. An
important insight into the shear displacement is to expand the
displaced fields as a Taylor series  » E y d E yy( ) ( )

+


+

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d d E y

dy
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3
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!
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( )
for dis-

placement dy much smaller than the characteristic scale on
which the field varies significantly, which for a Gaussian field
is the waist size w. Equation (1) then can be written as:

q
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Using series expansion of the sin and cos terms and
taking terms up to second-order: q qd k x d k x; ; ,y x y x

2 2( ) ( ) ( )( )
we obtain a simplified set of Sagnac transform equations:

q= - +E x y d
dE

dy
i k x E a, , 3t y x

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )

q
q= - +

-

E x y E
k x

E i d k x
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d d E
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Equations (3a) and (3b) form a set of master equations
and due to their relative mathematical simplicity are found to
be very instructive as a basis for understanding the spatial
transformation potential of the Sagnac interferometer for any
input spatial mode or general coherent modal combina-
tion E x y, .( )

3. Interferometric transformation of Laguerre–
Gaussian modes

Laser spatial eigenmodes typically fall into either the set of
Cartesian Hermite-Gaussian (HGmn) modes or the set of
cylindrical coordinate Laguerre–Gaussian (LGpl) modes. We
consider here the LGpl modes whose field distributions in
normalised form are given by [17]

= f y- - - -LG
K

w
L t

r

w
e e e e

a

2
,

4

pl
pl

p
l

l
il r w ikr R i z2 pl

2 2 2
⎛
⎝⎜

⎞
⎠⎟( )

( )

∣ ∣
∣ ∣

( )/ /

where w z( ) is the Gaussian radial waist size and R z( ) is the
wavefront radius of curvature, Lp

l∣ ∣ t( ) are generalised Laguerre
polynomials with argument =t r w2 2 2( )/ and radial index p
and azimuthal index l, with cylindrical coordinates fr,( )
having radial distance = +r x y2 2 and azimuthal angle f =

- y xtan .1( )/ Phase terms y = + + -p l z z2 1 tanpl R
1( ∣ ∣ ) ( )/ are

the mode-dependent propagation Gouy phase factors where zR
is the Rayleigh distance. For the LG modes the term f-e il is an
azimuthal spiral phase providing the defining feature of a vortex
field possessing orbital angular momentum with topological
charge l. The coefficients p= - +K p p l1 2pl

p( ) ! ( ∣ ∣)!/ /

are normalisation factors such that =dxdyLG 1.pl
2∬ ∣ ∣ The

LG modes possess the mathematical property of orthogonality
=¢ ¢dxdyLG .LG 0pl p l*∬ for different modes.

Setting the Sagnac interferometer at z=0, input modes
are taken to have a plane phase front, Gouy phases y = 0,pl

and = =w z w0 0( ) corresponding to the minimum Gaussian
waist size. Since mode transforming displacement and
angular imbalances of the Sagnac interferometer are in Car-
tesian x y,( ) directions, it is convenient in the following
mathematical formulation to express LG vortex modes in
Cartesian notation. For the case p=0, equation (4a) becomes

= =
 - +LG x y z C

y ix

w
e b, , 0 , 4l l

l
x y w

0 0
0

2 2
0
2⎛

⎝⎜
⎞
⎠⎟( ) ( )

∣ ∣
( )/

where p= -C w l i2 2l
l

0 0
2( !) ( )∣ ∣/ is a normalisation con-

stant at =z 0, and we have used the relation =f-r el il∣ ∣

- i y ixl l( ) ( )∣ ∣ ∣ ∣ where the upper and lower sign correspond
to positive and negative sign of l, respectively.
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3.1. Transformation of Gaussian mode to a first-order
vortex mode

Consider first the simplest case of a fundamental Gaussian
mode as the input field to the Sagnac interferometer =E

= - +C eLG ,x y w
00 00

2 2 2( )/ where w=w0 and C00 is the nor-
malisation constant. In this case, equation (3) leads to trans-
mitted and reflected output fields:

q
= + -E x y

d

w

y

w
i

kw x

w
C e a, 2

2
, 5t

y x r w
00

2 2⎜ ⎟
⎡
⎣⎢
⎛
⎝⎜
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⎠⎟

⎛
⎝

⎞
⎠

⎤
⎦⎥( ) ( )/

q q
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w
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w
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d

w
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w
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w

y

w
C e b
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2
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2
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Equation (5) has been written in a form so it is easy see
that there is a canonical condition q=d w kw 2y x( ) ( )/ / under
which the pre-factors in the y and x terms of the transmitted
field have equal magnitude. Under this condition, the trans-
mitted and reflected fields take on the form:

=
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In equation (6a), the transmitted field is expressed as a
normalised Laguerre–Gaussian vortex mode LG01 with topo-
logical charge =l 1 by noting + = f-y ix w i r w e .i( ) ( )/ / It
has amplitude proportional to d w ,y( )/ the ratio of the imbal-
ance displacement of the Sagnac interferometer to the Gaussian
beam waist size. The reflected beam at the Sagnac BS, given
by equation (6b), is an attenuated fundamental input mode
LG00 and with the addition of a LG02 Laguerre–Gaussian
mode component with topological charge =l 2 by noting

+ = - f-y ix w r w e i2 2 2 2( ) ( )/ / and =C C2 .00 02

Modal power analysis of equation (6) can be performed
by taking the integral E dxdy2∬ ∣ ∣ of the transmitted and
reflected fields and using the orthogonality property of the
modes. The ratio of the transmitted vortex LG01 power P01 to
the input power P00 of the fundamental Gaussian LG00 is
= =T P P d w2 .y01 00

2( )/ / The reflected power Pr has power-
reflectivity = = -R P P d w1 2r y00

2( )/ / by considering
terms up to second-order in small parameter d w .y( )/ To this
order of approximation, the reduction of the reflected Gaus-
sian power is equal to the transmitted power. The second
order vortex LG02 component present in the reflected field has
a modal power content = =R P P d w2 y2 02 00

4( )/ / and is a
weak term for small displacement.

This modal analysis shows that there is energy con-
servation to second-order in small parameter d w ;y( )/ the
power of the transmitted LG01 vortex mode equals the power
lost in the Gaussian LG00 reflection component. However,
there is an imbalance between the orbital angular momentum
of the input and output fields that implies an angular
momentum transfer to the transmitted optical field by the
Sagnac interferometer system. Inside the Sagnac inter-
ferometer the two counter-propagating beams are still Gaus-
sian and carry no angular momentum until they interfere at
the BS and it implies this BS component is the source of the
angular momentum. The two beams are incident from oppo-
site sides of the BS and by momentum change on reflection
will induce forces on the BS. The vertical shear beam dis-
placements will create a net torque in the vertical direction
whilst in the horizontal axis there will be unbalanced force
components as the two beams incident at different angles
create an increasing off-axis reflection imbalance.

The vorticity direction to generate the LG01 mode with
= +l 1 was determined by the choice of combination of sign

of displacement +dy and angular offset q- x in the current
analysis. By reversing the direction of either displacement or
angular offset gives a coordinate transformation in
equation (3) such that the transmitted field has a form
 -y ix w,( )/ equivalent to changing the handedness of
vorticity to topological charge = -l 1 and generation of the

-LG0, 1 mode.

3.2. Higher-order vortex generation

The previous section showed that the shear displacement and
angular offset transformation of the unbalanced Sagnac inter-
ferometer can be used for conversion of a Gaussian input LG00

into a first order vortex with = l 1, with the sign of vortex
simply switchable by reversing the direction of either the shear
displacement dy or angular offset q .x It is also easily shown from
equation (5a) that if only the shear displacement dy is used
(q = 0x ) then the incident =LG HG00 00( ) mode is converted to a
pure Hermite-Gaussian HG01 mode and if only the angular
displacement qx is used than it is converted to a pure
HG10 mode.

The Sagnac transformation master equation (3) can also
be applied to more general field input cases including high-
order mode input, superposition of modes, and other field
distributions. To aid the mathematical formulation, it is useful
to note that all Laguerre–Gaussian modes (and Hermite-
Gaussian modes) and superposition of such modes, have the
same general mathematical form

= - +E x y f x y e, , . 7x y w2 2 2( ) ( ) ( )( )/

Applying equation (7) to the master set of Sagnac
transform equations (3a) and (3b), and applying the canonical
condition q=d w kw 2 ,y x( ) ( )/ / the transmitted and the
reflected fields, for a generalised modal input field is given
by:

=
+

- -E x y
d

w

y ix

w
f w
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dy
e a, 2 , 8t

y r w2 2⎛
⎝⎜

⎞
⎠⎟

⎡
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⎛
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Using equations (8), it is now a simple matter to inves-
tigate the transformation of a variety of high-order and mode
combinations input into the Sagnac interferometer. Figure 2
shows Sagnac mode transformation into the transmitted field
for the first three Laguerre–Gaussian LG l0 vortex modes
l=0, +1, +2. The details of these field transformations and
their modal analysis and of the general set of LG l0 vortex
modes are expounded in the follow sections.

We can first see that for the simplest case of a Gaussian
input field to the Sagnac interferometer = =E LG00

- +C e ,x y w
00

2 2 2( )/ where =f C00 and =df dy 0,/ equation (8)
leads to the same transmitted vortex and reflected field solu-
tions as previously derived in equation (6).

It is interesting then to consider what happens for
the case of the input field being itself a vortex. For the
lowest-order vortex mode input field = =E x y, LG01( )

+ - +C y ix w e ,x y w
01

2 2 2[( ) ] ( )/ / the transmitted and reflected
fields are straightforwardly derived from equation (8)
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Equation (10a) shows that the Sagnac transforms a first-
order vortex input field LG01 into a superposition of a second-
order vortex mode (LG02) and a fundamental mode (LG00).
The intensity pattern of this superposition has two symme-
trically displaced singularities each with a single positive unit
of topological charge, as shown in figure 2. The transmitted
LG02 and LG00 mode components have power ratios relative
to the incident LG01 mode: = =T P P d w4 y2 02 01

2( )/ / and
= =T P P d w2 ,y0 00 01

2( )/ / respectively. The reflected field
given by equation (10b) consists of an attenuated LG01 mode
and a weak LG03 mode component. To second-order in
small parameter d w ,y( )/ the reflected power = =R P Pr 01/

- d w1 6 y
2( )/ has a loss that balances the total transmitted

power.
For the more general higher order vortex mode

(LG l0 ) with positive l 1 as input field =E x y,( )
+ - +C y ix w e ,l

l x y w
0

2 2 2[( ) ] ( )/ / equation (8) leads to the

Figure 2. The intensity (left side) and phase (right side) when applying the Sagnac transform to an input mode (middle row), where the
transform increases (top row) or decreases (bottom row) the vorticity into the transformed mode.
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The Sagnac output is seen to transform a general high-
order input vortex field of order l into a superposition of two
vortices ( +LG l0, 1 and -LG l0, 1) with orders +l 1( ) and
-l 1 ,( ) one above and one below the incident field. The

transmitted power ratios for +LG l0, 1 and -LG l0, 1 modal
components are = = ++ +T P P l d w2 1l l l y1 0, 1 0,

2( )( )/ / and
= =- -T P P l d w2 .l l l y1 0, 1 0,

2( )/ / The transmitted power for a
given shear displacement parameter d wy( )/ increases with
vortex mode order l.

The reflected field can be found with equation (8b) and
= +f C y ix w ,l

l
0 [( ) ]/ = + -df dy C wl y ix wl

l
0

1[( ) ]/ / / and
= - + -d f dy C w l l y ix w1 .l

l2 2
0

2 2( )[( ) ]/ / / It has the form
of an attenuated version of the input LG l0 mode with field
amplitude - +l d w1 2 1 LGy l

2
0[ ( )( ) ]/ and, to second-order

in parameter d w ,y( )/ a power reflectivity = =R P Pr l0/

- +l d w1 2 2 1 .y
2( )( )/ The reflected field has additional

weak higher-order +LG l0, 2 and lower-order -LG l0, 2 vortex
mode components (for l 2).

3.3. Mode transformation with interferometer imparting
‘negative’ vorticity

In the previous cases, the Sagnac added vorticity with the
same handedness to the incident vortex mode. The Sagnac
can also be configured to remove vorticity. This can be
accomplished by switching the relative displacement or
angular shift of the Sagnac interferometer to reverse direction
of vorticity transfer of the interferometer to the input vortex
mode. Changing the sign of the angular shift is equivalent to
replacing +y ix( ) with -y ix( ) in equations (8a) and (8b) to
give:
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For the case of lowest order vortex LG01 the transmitted
and reflected fields are
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The transmitted field can be expressed in cylindrical
coordinates and in a modal description
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noting = -C C01 10 and generalised Laguerre polynomial
= = -=

=L t r w t2 1 .p
l

1
0 2 2( )∣ ∣ / The Sagnac transforms LG01

into a pure LG10 mode which has no vorticity (l=0) and has
a single (p=1) zero amplitude ring at =r w 2 ./ The
intensity pattern of the LG10 mode is shown in figure 2. The
Sagnac has removed a single unit of topological charge
resulting in the loss of net vorticity (zero topological charge).
However the field is not reconverted to a Gaussian LG00 but
to a radial mode LG10 (with =p 1).

The reflected field has the form of an attenuated version
of input LG01 mode. Again, the decrease in the power of the
reflected field is equal to the generated power of the LG10

transmitted mode. The reflected field also has weak -LG1, 1

and -LG0, 1 modes, both having topological charge −1.
For the general vortex order LG l0,( ) as input field
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by noting = = - - -=L t r w t l2 1 .p
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1
2 2( ) ( )∣ ∣ / This shows all

vortex mode orders LG l0, transform to a pure -LG l1, 1( ) mode
with reduced vorticity -l 1( ) and increased radial index
=p 1. The transmitted power ratio = =-T P Pl l1, 1 0,/

d w2 ,y
2( )/ unlike the Sagnac case adding vorticity, is inde-

pendent of vortex mode order l. The reflected beam is an
attenuated LG l0, mode with power reflectivity = =R P Pr l0/

- d w1 2 y
2( )/ and analysis from equation (12b) shows there

is a weak mode component -LG l2, 2 with radial index =p 2 and
vorticity -l 2( ) by noting generalised Laguerre polynomial

= = - + + + +=L t r w t l t l l2 2 2 2 1 2.p
l

2
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4. Experimental verification of vortex mode
transformation

The previous sections provide new analysis of the vortex
transformational properties of the unbalanced Sagnac inter-
ferometer. This section provides an experimental demonstra-
tion to test the validity of the theoretical analysis.

A diagram of the Sagnac interferometer used for the
mode conversion is shown in figure 3. The interferometer
consisted of three mirrors M1, M2, and M3 and a 50/50 BS,
and had a perimeter of 12 cm. To perform the mode con-
version, the opposite vertical shear dy( ) was adjusted by
rotating a 3 mm thick anti-reflection coated glass plate that
was inside the Sagnac interferometer. Rotation of the plate
about the beam x-axis resulted in opposite vertical shear
between the counter-propagating beams and the direction of
rotation was reversed to either increase or decrease the output
vorticity. Details of this method of control are given in [14].
The opposite horizontal angular tilt q x( ) was controlled by
rotating mirror M2 about the beam y-axis. The input mode
was imaged with a single lens to a planar beam waist at M2 to
match the plane-wave theoretical construction of the previous
sections. The input beam to the Sagnac interferometer was
from a vortex generating laser of our own design described in
a previous publication [18]. This laser produced high quality
LG00, LG01 and LG02 modes of pure handedness at 1064 nm.

Throughout the experiment the mode conversion parameters
of displacement and angle qd ,y x( ) were kept small by main-
taining a canonical condition of q= =d w kw 2 0.24.y x/ / This
meant the transmission of the device was maintained below 30%
and the reflected mode was unchanged from the input as
expected. The waist radius of the underlying Gaussian (w) on M2
was 30μm, so to maintain the desired canonical condition this
determined a plate rotation angle of 7mrad to give =d 7y μm,
and q = 2.7x mrad by rotating M2 by half that amount. Both of
these rotations were easily controlled and maintained by standard
opto-mechanical mounts. Additionally, once configured the
vortex output of the interferometer was highly stable over long
periods (no observable change over at least 15min), in part due
to the common path design of the Sagnac interferometer making
it stable against environmental perturbations.

The experimental mode conversion results are shown in
figure 4, with left-side of diagram showing far-field intensity
profiles of the input and transmitted modes, and right-side their
interferometric phase profiles. The far-field intensity profiles of
the converted modes match well with the theoretical predictions
in figure 2, but the mode superpositions are rotated 90° com-
pared to the beam waist theoretical calculations, as expected, due
to the differing Gouy phase changes y z ,pl ( ) as seen in
equation (4a), between the component modes when propagated
to the far-field. In addition to replicating the intensity nulls of the
theoretical calculations, the experimentally converted modes
propagated with close to the expected beam propagation M2

parameter. The output LG01, LG10, and LG11 modes had mea-
sured M2 parameters of 2.1, 2.8, and 4.3, which match well to
the theoretical values of 2, 3 and 4, respectively.

To investigate the phase structure of the modes, a Mach–
Zehnder was used to interfere the modes with a tilted plane
wave reference of itself. In this configuration a phase singu-
larity is revealed as a ‘fork’ pattern in the interferogram by
introducing extra fringes from its additional 2π phase. The
number of fringes determines the order of the vortex, the
integer multiple of 2π phase change it has, and the position of
the extra fringe above or below the singularity determines the
direction of the vortex [19].

The experimental phase interferograms in figure 4 verify
that when the mode converter is configured to increase the
mode vorticity the number of additional fringes on the upper
half of the beam increases by one. This corresponds to an
additional 2π phase change around the whole mode. When
decreasing the mode vorticity with an LG00 input the con-
verted mode has the opposite handedness, for an LG01 input
the returned mode has no vorticity, and for the LG02 input the
returned mode has decremented the vorticity by one.

To demonstrate the propagation stability of the trans-
formed modes, the evolution of the second moment beam
radius of the LG00+LG02 superposition through a focus is
shown in figure 5, along with the beam intensity profile in the
near and far-fields. The beam radii are fitted with the Gaussian
beam propagation formula, which yields beam propagation
parameters in the horizontal and vertical planes of =M 2.2x

2

and =M 2.3,y
2 respectively. The inset intensity profiles show

that the beam is unchanged in the near and far fields, aside
from a rotation through the waist. This is due to a changing
Gouy phase difference between the LG00 and LG02 compo-
nents, and the angle of rotation is equal to the Gouy phase shift
y z .00 ( ) All of the converted beams were similarly propagation
invariant, with the mode superpositions rotating through 180°.

5. Conclusions

This work analyses the path imbalanced Sagnac inter-
ferometer to provide new insights into its mode transforma-
tional ability. Vertical shear displacement combined with an
angular wavefront displacement between the two Sagnac field
components in opposite ring directions is mathematically for-
mulated into a system of transformation equations. Solution of

Figure 3. The experimental configuration of the Sagnac inter-
ferometer mode conversion, which used a 3 mm thick glass plate for
vertical shear control and M2 rotation for horizontal angular tilt.
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the transform equations allows detailed mathematical analysis
of the resultant transmitted and reflected fields at the Sagnac
interferometer BS, for the first time, for arbitrary input
Laguerre–Gaussian LG l0, vortex mode. There is a canonical
relationship between the shear and angular displacement,
which is found to be the same for all vortex input modes,
which leads to the Sagnac interferometer imparting an increase
or decrease in the vorticity of an input field. A fundamental
Gaussian LG00 is transformed to a pure Laguerre–Gaussian

LG0, 1 vortex mode of topological charge l equal to either +1
or −1 whose sign of vorticity is controlled by the relative sign

of the shear and angular displacements. Whilst the latter
property has been previously described [13], the more general
mathematical formulation of this paper has also shown for the
first time, to the best of our knowledge, that higher-order
charge vortex input field LG l0 can also be transformed into
new modal fields. If the interferometer imparts vorticity in the
same direction as the input vortex, the transmitted beam is a
coherent combination of two vortex modes, one with higher
topological charge +LG l0, 1 and one with lower topological
charge -LG .l0, 1 If the handedness of the transferred Sagnac
vorticity is opposite to the input vortex LG l0 then the trans-
formed output field is another pure Laguerre–Gaussian mode

-LG l1, 1 reduced in vorticity by one unit of topological charge
 -l l 1( ) and at the same time increased in radial order
=  =p p0 1( ) with a single zero ring structure.
Experimental verification of the predictions of the vortex

mode transformation theory has been performed. The results
shown in figure 4 match closely to the theoretical predictions
shown in figure 2, in both amplitude structure and phase vorti-
city/singularities. The experimental propagation of a super-
position mode shows its propagation stability and the rotation of
the phase singularities as the beam passes through the focus, due
to the different Gouy phase shifts of the two modes in the
superposition.

The significance of this work is the potential new oppor-
tunities afforded by the Sagnac interferometer for formation of
vortices and coherent superposition of vortices whose multi-
singularity structures could have applications for optical trapping
and levitation, metrology, laser processing, and as a resource in
quantum systems [15]. This is especially so with a simple mir-
ror-based interferometer whose high-power handling capability
allows vortex generation at high powers/energies and with wide
choice of laser wavelength and ultrashort pulses, without

Figure 4. Results of the experimental LG00, LG01 and LG02 mode conversion showing the far-field intensity profiles (left side), and
interference pattern when combined with a tilted plane wave (right side). The Sagnac transform is applied to the input mode (middle row) and
either increases (top row) or decreases (bottom row) the vorticity of the input.

Figure 5. The experimentally measured beam radius on propagation
through a waist of the LG00+LG02 superposition in the horizontal
(red circles) and vertical (black squares) planes, each fitted to the
Gaussian beam formula (solid lines). The inset intensity profiles are
centred on their measurement position.
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requirement of bespoke manufactured fixed plate optical ele-
ments or high cost programmable devices (e.g. SLM and DMD)
that currently suffer with vulnerability to high laser flux [20].
The analysis of this work can be extended more generally to
other interferometer systems, although the Sagnac has advantage
of robust common-path and automatic destructive interference at
the transmission port that is required for the vortex generation.

Finally, it is noted that the unbalanced Sagnac inter-
ferometer has maximum transmission of 50% and generates
high quality vortex mode up to about 30% transmission or so
as demonstrated recently [16] and in the results of the
experimental section 4 of this paper. However, if the Sagnac
interferometer is used as an end mirror to a laser cavity, in
which case the un-transmitted (reflected) beam is recycled to
the laser cavity, the efficiency of the interferometric mode
transformation can be raised to near 100%, if the optics in the
interferometer are near lossless. In this context, we have
recently demonstrated that the Sagnac acting as a vortex
output coupler provides high quality and high efficiency
generation of controlled handedness vortex LG0, 1 modes
from a laser cavity supporting a Gaussian fundamental
internal mode [14]. The extended analysis of our current
paper shows that a laser supporting higher order vortex modes
could directly output more complex higher order modes and
superpositions by using the unbalanced Sagnac interferometer
as an output coupler. This laser could be based on previously
presented designs, for example using coupled laser cavities
[18] or annular pumping geometries [21]. The mode-depen-
dent transmission and reflectivity of the Sagnac device can
provide mode filtering and opportunities for intracavity mode
selection and vortex handedness control.
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