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Abstract: This work presents a study of a fully non-astigmatic design of a single-
longitudinal-mode, wavelength-tunable, unidirectional Alexandrite ring laser cavity and 
assessment of its performance compared to more complex laser design requiring astigmatism 
compensation. A “displaced mode” non-astigmatic laser cavity design eliminating astigmatic 
cavity elements is developed around an Alexandrite crystal end-pumped by a low brightness 
high power red diode laser pump system. Single-longitudinal-mode, continuous-wave 
operation is demonstrated with output power 700 mW with an excellent TEM00 mode (M2 

<1.1) across a wide pump power range. Wavelength tuning from 748-773 nm is produced 
using a birefringent filter plate. The non-astigmatic Alexandrite laser design achieves better 
spatial quality and resilience to maintain TEM00 operation across wide variation in pump-
induced lensing compared to the astigmatic design. To the best of our knowledge, this is the 
first wavelength-tunable, single-longitudinal-mode operation of a unidirectional Alexandrite 
ring system in a fully non-astigmatic cavity regime. 

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Alexandrite [Chrysoberyl (BeAl2O4) doped with Chromium ions (Cr3+)] is a broadly tunable 
(701-858 nm) solid-state vibronic laser. Its broad tunability combined with excellent thermo-
mechanical properties for high power and long upper-state lifetime for good energy storage 
makes Alexandrite an interesting laser material for many applications including medical [1], 
high-resolution spectroscopy [2], and remote sensing/lidar [3]. Alexandrite lasers operate well 
at room-temperature and, interestingly, performance improves at elevated temperature [4-6] 
due to enhanced effective gain cross-section. This contrasts to most solid-state lasers such as 
Nd:YAG and Ti:Sapphire, which perform better when cooled. Three-level laser operation at 
~680 nm is also possible from the 2E storage level and enhanced performance at this 
transition has been shown at cryogenic temperatures [7]. Alexandrite has broad absorption 
bands across the visible spectrum, which allows various pump schemes such as flash lamps, 
arc lamps or laser diodes [4-8]. Development of Alexandrite lasers with direct red diode-
pumping is of prime interest due to small quantum defect, high system efficiency and low 
cost. First demonstrations of red diode-pumped Alexandrite were by Scheps in the early 
1990s [9,10]. In more recent years, advancement in high power red diode lasers (Aluminum 
Gallium Indium Phosphide, AlGaInP), has enabled more efficient and multi-watt diode-
pumped operation of side-pumped Alexandrite slab lasers [11], a record power of  26.2 W in 
end-pumped Alexandrite rod configuration using free-space diode pumping [12], fibre-
delivered diode end-pumped Alexandrite laser with the highest slope efficiency to date (54%) 
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[13], and utilising the long upper-state lifetime for energy storage, Q-switched operation of 
diode-pumped Alexandrite has been demonstrated [11,12,14]. 

Whilst several Alexandrite laser demonstrations have been made in recent years by a few 
research groups, for future precision applications in areas such as quantum technologies and 
remote sensing there is the additional need for Alexandrite to operate with an ultra-narrow 
linewidth (MHz or sub-MHz) and with precise wavelength selectivity for spectral locking to 
narrow atomic/molecular transitions [2,3,14]. First demonstrations of narrow linewidth 
development have been made in an injection-seeded unidirectional Alexandrite ring laser in 
Q-switched pulse mode for atmospheric lidar at the potassium resonance at 770 nm [14], and 
in a wavelength-tunable unidirectional continuous-wave single-longitudinal-mode 
Alexandrite laser [15]. These first demonstrations have had to address issues with 
asymmetrically-shaped pumping [14] and astigmatic cavity elements (Brewster-cut laser 
crystal and angled curved mirrors) [15] requiring bespoke cavity designs with astigmatism 
compensation to enable high quality TEM00 operation in both the horizontal and vertical 
mode directions. A further significant issue encountered is the asymmetric pumping, which is 
especially pronounced in Brewster-cut crystal even for symmetric pump beam, leading to 
astigmatic pump-induced lensing and restricting the stable TEM00 operational power range 
[15] without making complex cavity adjustments. Therefore, although astigmatism 
compensation laser schemes have been devised [15-20], and beam symmetrising by using 
fibre-delivery of pump [21], there is still a challenge for design complexity when using 
astigmatic cavity elements and limitations for laser operating power variation [14,15]. 
     This paper reports a systematic laser development of a non-astigmatic Alexandrite ring 
laser design with no astigmatic elements. The aim was to compare operation of the non-
astigmatic Alexandrite ring laser to a more complex bow-tie ring cavity design incorporating 
Brewster-angle cut Alexandrite crystal and angled curved cavity mirrors configured for 
astigmatism compensation [15]. The outcome of this study is the successful operation of a 
compact unidirectional non-astigmatic Alexandrite ring laser design with single-frequency 
operation and superior TEM00 spatial quality across a much wider pump range. 
 In Section 2, a compact two-mirror laser cavity is operated to calibrate maximum 
efficiency of a plane-plane parallel cut non-astigmatic Alexandrite crystal end-pumped by a 
moderate-power fibre-delivered red diode pump module, which is then developed into a non-
astigmatic rectangular-shaped ring laser cavity design and operated in bidirectional mode. In 
Section 3, a full detailing is made of ring resonator “displaced mode” TEM00 design using 
ABCD cavity modelling software and finite element analysis (FEA) to optimise under 
varying pump-dependent thermal lensing. Experimentally, the non-astigmatic ring laser 
system is operated in unidirectional mode and with a higher-power free-space red diode pump 
module. Continuous-wave, unidirectional Alexandrite ring cavity operation is obtained in 
single-longitudinal-mode (SLM) with output power of 700 mW at a wavelength of 754.6 nm 
and excellent TEM00 beam quality M2

x (horizontal) × M2
y (vertical) = 1.07 × 1.06. Using a 

birefringent filter, wavelength tuning of the unidirectional ring cavity was achieved from 748 
nm to 773 nm, with tuning limited by the spectral reflectivity of the output coupler. Section 4 
provides final conclusions of the paper. 

2. Alexandrite compact linear and bidirectional ring lasers with fibre-delivered 
diode pump  

2.1 Compact linear Alexandrite laser 

Before proceeding to the ring laser cavity design, a preliminary compact laser experiment was 
conducted on the diode-pumped performance of the Alexandrite crystal to be used in the ring 
cavity design. Figure 1 shows the end-pumped Alexandrite rod crystal in a compact plane-
plane mirror cavity.  The Alexandrite rod was a c-axis cut crystal with plane parallel end 
faces anti-reflection coated (at 755 nm) with length 10 mm, diameter 4 mm and with 0.22 at. 
% Cr doping concentration. The Alexandrite rod was embedded in water-cooled copper 
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     For the optical path length of the laser cavity ~430 mm (accounting for refractive indices 
of intracavity elements) the longitudinal mode spacing is ~700 MHz. The FP used in this 
experiment had a free spectral range of 6.9 GHz and finesse of 50 that correspond to a 
resolving power ~140 MHz, which means longitudinal modes can be well resolved. The 
single ring per FP free spectral range in Fig. 12(b) shows that the laser is running in a pure 
single-longitudinal-mode. To the best of our knowledge, this is the first demonstration of 
wavelength-tunable unidirectional single-longitudinal-mode operation of a CW diode-
pumped Alexandrite ring laser with a non-astigmatic resonator design.  

4. Conclusion 

The outcome of this work is the design and successful operation of a non-astigmatic 
Alexandrite laser that operates with wavelength tunability and single-longitudinal-mode. One 
of the goals was to investigate whether this design could be a simpler suitable alternative to 
the more complex laser design with astigmatic Brewster-cut crystal and angled curved 
mirrors. The results of its operation have demonstrated achievement of a higher spatial quality 
TEM00 mode and over the full pump range, rather than the more complex behavior due to the 
asymmetric pump-induced lensing in the Brewster-cut crystal of the astigmatic design [15].   
     We have developed a non-astigmatic unidirectional Alexandrite ring laser design utilising 
non-astigmatic intracavity optical elements at normal incidence. Numerical modelling of a 
“displaced mode” ring cavity design is performed with ABCD Gaussian propagation software 
and numerical finite element analysis for incorporation of pump-dependent thermal lensing in 
the Alexandrite laser crystal. The modelling theory is used to optimise the TEM00 mode-
matching cavity configuration by adjusting the relative distances of the intracavity lenses 
from the laser crystal and the laser mode waist location for varying thermal lens strength. An 
experimental demonstration is performed of a wavelength-tunable unidirectional Alexandrite 
ring laser in the non-astigmatic cavity design. The laser produced 700 mW of CW output 
power with a slope efficiency of 13%. Excellent TEM00 beam quality with M2 <1.1 is 
achieved across the whole pump power range. Spectral analysis shows SLM output and 
wavelength tuning from 748 nm to 773 nm, limited by the spectral reflectivity of the cavity 
optics. To the best of our knowledge, this is the first wavelength-tunable SLM operation of a 
unidirectional Alexandrite ring system in the non-astigmatic cavity regime.  
 One of the goals to show if a simpler non-astigmatic design could be used as a suitable 
alternative to the more complex astigmatic design has been demonstrated. The non-astigmatic 
design allowed both a simpler modelling and achievement of a higher spatial quality TEM00 
mode over a wider pump range.  Although it may be possible to achieve the same 
performance in the astigmatic cavity, the adjustment compensation is more complex to 
accomplish for both the horizontal and vertical axis at the same time, as the thermal lens 
changes. The physical footprint size of both cavities was similarly compact. The non-
astigmatic cavity had a higher laser slope efficiency but lower output power due to higher 
losses and smaller tuning range due to poorer spectral coatings of cavity optics. These latter 
issues could be accounted for, in principle, with higher quality optical coatings in future 
development of the non-astigmatic laser. However, if very wide wavelength tuning is required 
(e.g. as in multi-hundred nanometer tuning in Ti:Sapphire), the Brewster-cut crystal with no 
coating, and high reflectivity mirrors of the astigmatic cavity design, has spectral tuning 
advantages. For the relatively limited tuning of Alexandrite (sub-hundred nanometer or multi-
ten nanometers) this issue is less problematic and the non-astigmatic design with suitably AR-
coated Alexandrite crystal and intracavity lenses is a viable alternative. Future work suggests 
improvements be made to efficiency and tuning performance of the non-astigmatic laser 
design with the inclusion of better-quality optics and intra-cavity elements with reduced 
insertion losses, and more consideration of operation at a higher Alexandrite crystal 
temperature. The results obtained in this experiment provide an insight into the design 



parameters for optimum performance as needed for high-spectral precision applications in 
remote sensing (Lidar), spectroscopy or quantum technologies. 
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