308 research outputs found

    Reduction of nickel oxide particles by hydrogen studied in an environmental TEM

    Get PDF
    In situ reduction of nickel oxide (NiO) particles is performed under 1.3mbar of hydrogen gas (H2) in an environmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS) are acquired to monitor the structural and chemical evolution of the system during reduction, whilst increasing the temperature. Ni nucleation on NiO is either observed to be epitaxial or to involve the formation of randomly oriented grains. The growth of Ni crystallites and the movement of interfaces result in the formation of pores within the NiO grains to accommodate the volume shrinkage associated with the reduction. Densification is then observed when the sample is nearly fully reduced. The reaction kinetics is obtained using EELS by monitoring changes in the shapes of the Ni L2,3 white lines. The activation energy for NiO reduction is calculated from the EELS data using both a physical model-fitting technique and a model-independent method. The results of the model-fitting procedure suggest that the reaction is described by Avrami models (whereby the growth and impingement of Ni domains control the reaction), in agreement with the ETEM observation

    A new methodology to simulate subglacial deformation of water-saturated granular material

    Get PDF
    The dynamics of glaciers are to a large degree governed by processes operating at the ice–bed interface, and one of the primary mechanisms of glacier flow over soft unconsolidated sediments is subglacial deformation. However, it has proven difficult to constrain the mechanical response of subglacial sediment to the shear stress of an overriding glacier. In this study, we present a new methodology designed to simulate subglacial deformation using a coupled numerical model for computational experiments on grain-fluid mixtures. The granular phase is simulated on a per-grain basis by the discrete element method. The pore water is modeled as a compressible Newtonian fluid without inertia. The numerical approach allows close monitoring of the internal behavior under a range of conditions. <br><br> Our computational experiments support the findings of previous studies where the rheology of a slowly deforming water-saturated granular bed in the steady state generally conforms to the rate-independent plastic rheology. Before this so-called critical state, deformation is in many cases accompanied by volumetric changes as grain rearrangement in active shear zones changes the local porosity. For previously consolidated beds porosity increases can cause local pore-pressure decline, dependent on till permeability and shear rate. We observe that the pore-water pressure reduction strengthens inter-granular contacts, which results in increased shear strength of the granular material. In contrast, weakening takes place when shear deformation causes consolidation of dilated sediments or during rapid fabric development. Both processes of strengthening and weakening depend inversely on the sediment permeability and are transient phenomena tied to the porosity changes during the early stages of shear. <br><br> We find that the transient strengthening and weakening in turn influences the distribution of shear strain in the granular bed. Dilatant strengthening has the ability to distribute strain during early deformation to large depths, if sediment dilatancy causes the water pressure at the ice–bed interface to decline. Oppositely, if the ice–bed interface is hydrologically stable the strengthening process is minimal and instead causes shallow deformation. The depth of deformation in subglacial beds thus seems to be governed by not only local grain and pore-water feedbacks but also larger-scale hydrological properties at the ice base

    Spin injection from Co2MnGa into an InGaAs quantum well

    Get PDF
    We have demonstrated spin injection from a full Heusler alloy Co2MnGa thin film into a (100) InGaAs quantum well in a semiconductor light-emitting diode structure at a temperature of 5 K. The detection is performed in the oblique Hanle geometry, allowing quantification of the effective spin lifetime and spin detection efficiency (22 +/- 4%). This work builds on existing studies on off-stoichiometric Heusler injectors into similar light-emitting-diode structures. The role of injector stoichiometry can therefore be quantitatively assessed with the result that the spin injection efficiency increases by a factor of approximately 2 as compared with an off-stoichiometric Co2.4Mn1.6Ga injector. (C) 2008 American Institute of Physics

    A web of stakeholders and strategies: A case of broadband diffusion in South Korea

    Get PDF
    When a new technology is launched, its diffusion becomes an issue of importance. There are various stakeholders that influence diffusion. The question that remains to be determined is their identification and roles. This paper outlines how the strategies pursued by a government acting as the key stakeholder affected the diffusion of a new technology. The analysis is based on a theoretical framework derived from innovation diffusion and stakeholder theories. The empirical evidence comes from a study of broadband development in South Korea. A web of stakeholders and strategies is drawn in order to identify the major stakeholders involved and highlight their relations. The case of South Korea offers implications for other countries that are pursuing broadband diffusion strategies
    corecore