59 research outputs found
Computational Analysis of Cas Proteins Unlocks New Potential in HIV-1 Targeted Gene Therapy
Introduction: The human immunodeficiency virus type 1 (HIV-1) pandemic has been slowed with the advent of anti-retroviral therapy (ART). However, ART is not a cure and as such has pushed the disease into a chronic infection. One potential cure strategy that has shown promise is the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing system. It has recently been shown to successfully edit and/or excise the integrated provirus from infected cells and inhibit HIV-1 in vitro, ex vivo, and in vivo. These studies have primarily been conducted with SpCas9 or SaCas9. However, additional Cas proteins are discovered regularly and modifications to these known proteins are being engineered. The alternative Cas molecules have different requirements for protospacer adjacent motifs (PAMs) which impact the possible targetable regions of HIV-1. Other modifications to the Cas protein or gRNA handle impact the tolerance for mismatches between gRNA and the target. While reducing off-target risk, this impacts the ability to fully account for HIV-1 genetic variability.
Methods: This manuscript strives to examine these parameter choices using a computational approach for surveying the suitability of a Cas editor for HIV-1 gene editing. The Nominate, Diversify, Narrow, Filter (NDNF) pipeline measures the safety, broadness, and effectiveness of a pool of potential gRNAs for any PAM. This technique was used to evaluate 46 different potential Cas editors for their HIV therapeutic potential.
Results: Our examination revealed that broader PAMs that improve the targeting potential of editors like SaCas9 and LbCas12a have larger pools of useful gRNAs, while broader PAMs reduced the pool of useful SpCas9 gRNAs yet increased the breadth of targetable locations. Investigation of the mismatch tolerance of Cas editors indicates a 2-missmatch tolerance is an ideal balance between on-target sensitivity and off-target specificity. Of all of the Cas editors examined, SpCas-NG and SPRY-Cas9 had the highest number of overall safe, broad, and effective gRNAs against HIV.
Discussion: Currently, larger proteins and wider PAMs lead to better targeting capacity. This implies that research should either be targeted towards delivering longer payloads or towards increasing the breadth of currently available small Cas editors. With the discovery and adoption of additional Cas editors, it is important for researchers in the HIV-1 gene editing field to explore the wider world of Cas editors
Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection
Antiretroviral therapy has prolonged the lives of people living with human immunodeficiency virus type 1 (HIV-1), transforming the disease into one that can be controlled with lifelong therapy. The search for an HIV-1 vaccine has plagued researchers for more than three decades with little to no success from clinical trials. Due to these failures, scientists have turned to alternative methods to develop next generation therapeutics that could allow patients to live with HIV-1 without the need for daily medication. One method that has been proposed has involved the use of a number of powerful gene editing tools; Zinc Finger Nucleases (ZFN), Transcription Activator–like effector nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to edit the co-receptors (CCR5 or CXCR4) required for HIV-1 to infect susceptible target cells efficiently. Initial safety studies in patients have shown that editing the CCR5 locus is safe. More in depth in vitro studies have shown that editing the CCR5 locus was able to inhibit infection from CCR5-utilizing virus, but CXCR4-utilizing virus was still able to infect cells. Additional research efforts were then aimed at editing the CXCR4 locus, but this came with other safety concerns. However, in vitro studies have since confirmed that CXCR4 can be edited without killing cells and can confer resistance to CXCR4-utilizing HIV-1. Utilizing these powerful new gene editing technologies in concert could confer cellular resistance to HIV-1. While the CD4, CCR5, CXCR4 axis for cell-free infection has been the most studied, there are a plethora of reports suggesting that the cell-to-cell transmission of HIV-1 is significantly more efficient. These reports also indicated that while broadly neutralizing antibodies are well suited with respect to blocking cell-free infection, cell-to-cell transmission remains refractile to this approach. In addition to stopping cell-free infection, gene editing of the HIV-1 co-receptors could block cell-to-cell transmission. This review aims to summarize what has been shown with regard to editing the co-receptors needed for HIV-1 entry and how they could impact the future of HIV-1 therapeutic and prevention strategies
Delivering CRISPR to the HIV-1 Reservoirs
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed
Recommended from our members
Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection
Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH
Utilization of HIV-1 envelope V3 to identify X4- and R5-specific Tat and LTR sequence signatures.
BACKGROUND: HIV-1 entry is a receptor-mediated process directed by the interaction of the viral envelope with the host cell CD4 molecule and one of two co-receptors, CCR5 or CXCR4. The amino acid sequence of the third variable (V3) loop of the HIV-1 envelope is highly predictive of co-receptor utilization preference during entry, and machine learning predictive algorithms have been developed to characterize sequences as CCR5-utilizing (R5) or CXCR4-utilizing (X4). It was hypothesized that while the V3 loop is predominantly responsible for determining co-receptor binding, additional components of the HIV-1 genome may contribute to overall viral tropism and display sequence signatures associated with co-receptor utilization.
RESULTS: The accessory protein Tat and the HlV-1 long terminal repeat (LTR) were analyzed with respect to genetic diversity and compared by Jensen-Shannon divergence which resulted in a correlation with both mean genetic diversity as well as the absolute difference in genetic diversity between R5- and X4-genome specific trends. As expected, the V3 domain of the gp120 protein was enriched with statistically divergent positions. Statistically divergent positions were also identified in Tat amino acid sequences within the transactivation and TAR-binding domains, and in nucleotide positions throughout the LTR. We further analyzed LTR sequences for putative transcription factor binding sites using the JASPAR transcription factor binding profile database and found several putative differences in transcription factor binding sites between R5 and X4 HIV-1 genomes, specifically identifying the C/EBP sites I and II, and Sp site III to differ with respect to sequence configuration for R5 and X4 LTRs.
CONCLUSION: These observations support the hypothesis that co-receptor utilization coincides with specific genetic signatures in HIV-1 Tat and the LTR, likely due to differing transcriptional regulatory mechanisms and selective pressures applied within specific cellular targets during the course of productive HIV-1 infection
Examining virtual driving test performance and its relationship to individuals with HIV-associated neurocognitive disorders
SIGNIFICANCE: Existing screening tools for HIV-associated neurocognitive disorders (HAND) are often clinically impractical for detecting milder forms of impairment. The formal diagnosis of HAND requires an assessment of both cognition and impairment in activities of daily living (ADL). To address the critical need for identifying patients who may have disability associated with HAND, we implemented a low-cost screening tool, the Virtual Driving Test (VDT) platform, in a vulnerable cohort of people with HIV (PWH). The VDT presents an opportunity to cost-effectively screen for milder forms of impairment while providing practical guidance for a cognitively demanding ADL.
OBJECTIVES: We aimed to: (1) evaluate whether VDT performance variables were associated with a HAND diagnosis and if so; (2) systematically identify a manageable subset of variables for use in a future screening model for HAND. As a secondary objective, we examined the relative associations of identified variables with impairment within the individual domains used to diagnose HAND.
METHODS: In a cross-sectional design, 62 PWH were recruited from an established HIV cohort and completed a comprehensive neuropsychological assessment (CNPA), followed by a self-directed VDT. Dichotomized diagnoses of HAND-specific impairment and impairment within each of the seven CNPA domains were ascertained. A systematic variable selection process was used to reduce the large amount of VDT data generated, to a smaller subset of VDT variables, estimated to be associated with HAND. In addition, we examined associations between the identified variables and impairment within each of the CNPA domains.
RESULTS: More than half of the participants (
CONCLUSION: We identified a subset of VDT performance variables that are associated with HAND and assess relevant functional abilities among individuals with HAND. Additional research is required to develop and validate a predictive HAND screening model incorporating this subset
Assessment of anti-HIV-1 guide RNA efficacy in cells containing the viral target sequence, corresponding gRNA, and CRISPR/Cas9
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 gene editing system has been shown to be effective at inhibiting human immunodeficiency virus type 1 (HIV-1). Studies have not consistently used a trackable dual reporter system to determine what cells received the Cas9/gRNA to determine the overall knockdown of HIV. Some studies have used stably transduced cells under drug selection to accomplish this goal. Here a two-color system was used that allows tracking of viral protein expression and which cells received the CRISPR/Cas9 system. These experiments ensured that each gRNA used was a perfect match to the intended target to remove this variable. The data showed that gRNAs targeting the transactivation response element (TAR) region or other highly conserved regions of the HIV-1 genome were effective at stopping viral gene expression, with multiple assays demonstrating greater than 95 percent reduction. Conversely, gRNAs targeting conserved sites of the 5’ portion of the U3 region were largely ineffective, demonstrating that the location of edits in the long terminal repeat (LTR) matter with respect to function. In addition, it was observed that a gRNA targeting Tat was effective in a T-cell model of HIV-1 latency. Taken together, these studies demonstrated gRNAs designed to highly conserved functional regions have near 100% efficacy in vitro in cells known to have received the Cas9/gRNA pair
Assessment of anti-HIV-1 Guide RNA Efficacy in Cells Containing the Viral Target Sequence, Corresponding gRNA, and CRISPR/Cas9.
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 gene editing system has been shown to be effective at inhibiting human immunodeficiency virus type 1 (HIV-1). Studies have not consistently used a trackable dual reporter system to determine what cells received the Cas9/gRNA to determine the overall knockdown of HIV. Some studies have used stably transduced cells under drug selection to accomplish this goal. Here a two-color system was used that allows tracking of viral protein expression and which cells received the CRISPR/Cas9 system. These experiments ensured that each gRNA used was a perfect match to the intended target to remove this variable. The data showed that gRNAs targeting the transactivation response element (TAR) region or other highly conserved regions of the HIV-1 genome were effective at stopping viral gene expression, with multiple assays demonstrating greater than 95 percent reduction. Conversely, gRNAs targeting conserved sites of the 5’ portion of the U3 region were largely ineffective, demonstrating that the location of edits in the long terminal repeat (LTR) matter with respect to function. In addition, it was observed that a gRNA targeting Tat was effective in a T-cell model of HIV-1 latency. Taken together, these studies demonstrated gRNAs designed to highly conserved functional regions have near 100% efficacy in vitro in cells known to have received the Cas9/gRNA pair
CCAAT enhancer binding protein and nuclear factor of activated T cells regulate HIV-1 LTR via a novel conserved downstream site in cells of the monocyte-macrophage lineage.
Transcriptional control of the human immunodeficiency virus type 1 (HIV-1) promoter, the long terminal repeat (LTR), is achieved by interactions with cis-acting elements present both upstream and downstream of the start site. In silico transcription factor binding analysis of the HIV-1 subtype B LTR sequences revealed a potential downstream CCAAT enhancer binding protein (C/EBP) binding site. This binding site (+158 to+172), designated DS3, was found to be conserved in 67% of 3,858 unique subtype B LTR sequences analyzed in terms of nucleotide sequence as well as physical location in the LTR. DS3 was found to be well represented in other subtypes as well. Interestingly, DS3 overlaps with a previously identified region that bind members of the nuclear factor of activated T cells (NFAT) family of proteins. NFATc2 exhibited a higher relative affinity for DS3 as compared with members of the C/EBP family (C/EBP α and β). DS3 was able to compete efficiently with the low-affinity upstream C/EBP binding site I with respect to C/EBP binding, suggesting utilization of both NFAT and C/EBP. Moreover, cyclosporine A treatment, which has been shown to prevent dephosphorylation and nuclear translocation of NFAT isoforms, resulted in enhanced C/EBPα binding. The interactions at DS3 were also validated in an integrated HIV-1 LTR in chronically infected U1 cells. A binding knockout of DS3 demonstrated reduced HIV-1 LTR-directed transcription under both basal and interleukin-6-stimulated conditions only in cells of the monocyte-macrophage lineage cells and not in cells of T-cell origin. Thus, the events at DS3 positively regulate the HIV-1 promoter in cells of the monocyte-macrophage lineage
- …