922 research outputs found

    k-Inflation

    Get PDF
    It is shown that a large class of higher-order (i.e. non-quadratic) scalar kinetic terms can, without the help of potential terms, drive an inflationary evolution starting from rather generic initial conditions. In many models, this kinetically driven inflation (or "k-inflation" for short) rolls slowly from a high-curvature initial phase, down to a low-curvature phase and can exit inflation to end up being radiation-dominated, in a naturally graceful manner. We hope that this novel inflation mechanism might be useful in suggesting new ways of reconciling the string dilaton with inflation.Comment: LaTeX, 20 pages including 3 figures. Submitted to Phys. Lett.

    Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates

    Full text link
    Dimensional regularization is used to derive the equations of motion of two point masses in harmonic coordinates. At the third post-Newtonian (3PN) approximation, it is found that the dimensionally regularized equations of motion contain a pole part [proportional to 1/(d-3)] which diverges as the space dimension d tends to 3. It is proven that the pole part can be renormalized away by introducing suitable shifts of the two world-lines representing the point masses, and that the same shifts renormalize away the pole part of the "bulk" metric tensor g_munu(x). The ensuing, finite renormalized equations of motion are then found to belong to the general parametric equations of motion derived by an extended Hadamard regularization method, and to uniquely determine the heretofore unknown 3PN parameter lambda to be: lambda = - 1987/3080. This value is fully consistent with the recent determination of the equivalent 3PN static ambiguity parameter, omega_s = 0, by a dimensional-regularization derivation of the Hamiltonian in Arnowitt-Deser-Misner coordinates. Our work provides a new, powerful check of the consistency of the dimensional regularization method within the context of the classical gravitational interaction of point particles.Comment: 82 pages, LaTeX 2e, REVTeX 4, 8 PostScript figures, minor changes to reflect Phys. Rev. D versio

    Chaos and Order in Models of Black Hole Pairs

    Get PDF
    Chaos in the orbits of black hole pairs has by now been confirmed by several independent groups. While the chaotic behavior of binary black hole orbits is no longer argued, it remains difficult to quantify the importance of chaos to the evolutionary dynamics of a pair of comparable mass black holes. None of our existing approximations are robust enough to offer convincing quantitative conclusions in the most highly nonlinear regime. It is intriguing to note that in three different approximations to a black hole pair built of a spinning black hole and a non-spinning companion, two approximations exhibit chaos and one approximation does not. The fully relativistic scenario of a spinning test-mass around a Schwarzschild black hole shows chaos, as does the Post-Newtonian Lagrangian approximation. However, the approximately equivalent Post-Newtonian Hamiltonian approximation does not show chaos when only one body spins. It is well known in dynamical systems theory that one system can be regular while an approximately related system is chaotic, so there is no formal conflict. However,the physical question remains, Is there chaos for comparable mass binaries when only one object spins? We are unable to answer this question given the poor convergence of the Post-Newtonian approximation to the fully relativistic system. A resolution awaits better approximations that can be trusted in the highly nonlinear regime

    Effective field theory calculation of second post-Newtonian binary dynamics

    Full text link
    We use the effective field theory for gravitational bound states, proposed by Goldberger and Rothstein, to compute the interaction Lagrangian of a binary system at the second Post-Newtonian order. Throughout the calculation, we use a metric parametrization based on a temporal Kaluza-Klein decomposition and test the claim by Kol and Smolkin that this parametrization provides important calculational advantages. We demonstrate how to use the effective field theory method efficiently in precision calculations, and we reproduce known results for the second Post-Newtonian order equations of motion in harmonic gauge in a straightforward manner.Comment: Replaced with published versio

    Coalescence of Two Spinning Black Holes: An Effective One-Body Approach

    Full text link
    We generalize to the case of spinning black holes a recently introduced ``effective one-body'' approach to the general relativistic dynamics of binary systems. The combination of the effective one-body approach, and of a Pad\'e definition of some crucial effective radial functions, is shown to define a dynamics with much improved post-Newtonian convergence properties, even for black hole separations of the order of 6GM/c26 GM / c^2. We discuss the approximate existence of a two-parameter family of ``spherical orbits'' (with constant radius), and, of a corresponding one-parameter family of ``last stable spherical orbits'' (LSSO). These orbits are of special interest for forthcoming LIGO/VIRGO/GEO gravitational wave observations. It is argued that for most (but not all) of the parameter space of two spinning holes the effective one-body approach gives a reliable analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a quantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a detection bias, in LIGO/VIRGO/GEO observations, favouring spinning black hole systems, and makes it urgent to complete the conservative effective one-body dynamics given here by adding (resummed) radiation reaction effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never approaches extremality.Comment: 26 pages, two eps figures, accepted in Phys. Rev. D, minor updating of the text, clarifications added and inclusion of a few new reference

    The Equivalence Principle and the Constants of Nature

    Full text link
    We briefly review the various contexts within which one might address the issue of ``why'' the dimensionless constants of Nature have the particular values that they are observed to have. Both the general historical trend, in physics, of replacing a-priori-given, absolute structures by dynamical entities, and anthropic considerations, suggest that coupling ``constants'' have a dynamical nature. This hints at the existence of observable violations of the Equivalence Principle at some level, and motivates the need for improved tests of the Equivalence Principle.Comment: 12 pages; invited talk at the ISSI Workshop on the Nature of Gravity: Confronting Theory and Experiment in Space, Bern, Switzerland, 6-10 October 2008; to appear in Space Science Review

    Second post-Newtonian gravitational wave polarizations for compact binaries in elliptical orbits

    Get PDF
    The second post-Newtonian (2PN) contribution to the `plus' and `cross' gravitational wave polarizations associated with gravitational radiation from non-spinning, compact binaries moving in elliptic orbits is computed. The computation starts from our earlier results on 2PN generation, crucially employs the 2PN accurate generalized quasi-Keplerian parametrization of elliptic orbits by Damour, Sch\"afer and Wex and provides 2PN accurate expressions modulo the tail terms for gravitational wave polarizations incorporating effects of eccentricity and periastron precession.Comment: 40 pages, 10 figures, To appear in Phys. Rev.

    On the equation of motion of compact binaries in Post-Newtonian approximation

    Full text link
    A third post-Newtonian (3 PN) equation of motion for two spherical compact stars in a harmonic coordinate has been derived based on the surface integral approach and the strong field point particle limit. The strong field point particle limit enables us to incorporate a notion of a self-gravitating regular star into general relativity. The resulting 3 PN equation of motion is Lorentz invariant, unambiguous, and conserves an energy of the binary orbital motion.Comment: 7 pages, no figure. Proceedings of the 5th Amaldi Conference on Gravitational Waves, Pisa, Italy, 6-11 July 200

    Post-Newtonian Theory for Precision Doppler Measurements of Binary Star Orbits

    Get PDF
    The determination of velocities of stars from precise Doppler measurements is described here using relativistic theory of astronomical reference frames so as to determine the Keplerian and post-Keplerian parameters of binary systems. We apply successive Lorentz transformations and the relativistic equation of light propagation to establish the exact treatment of Doppler effect in binary systems both in special and general relativity theories. As a result, the Doppler shift is a sum of (1) linear in c1c^{-1} terms, which include the ordinary Doppler effect and its variation due to the secular radial acceleration of the binary with respect to observer; (2) terms proportional to c2c^{-2}, which include the contributions from the quadratic Doppler effect caused by the relative motion of binary star with respect to the Solar system, motion of the particle emitting light and diurnal rotational motion of observer, orbital motion of the star around the binary's barycenter, and orbital motion of the Earth; and (3) terms proportional to c2c^{-2}, which include the contributions from redshifts due to gravitational fields of the star, star's companion, Galaxy, Solar system, and the Earth. After parameterization of the binary's orbit we find that the presence of periodically changing terms in the Doppler schift enables us disentangling different terms and measuring, along with the well known Keplerian parameters of the binary, four additional post-Keplerian parameters, including the inclination angle of the binary's orbit, ii. We briefly discuss feasibility of practical implementation of these theoretical results, which crucially depends on further progress in the technique of precision Doppler measurements.Comment: Minor changes, 1 Figure included, submitted to Astrophys.

    Third-and-a-half order post-Newtonian equations of motion for relativistic compact binaries using the strong field point particle limit

    Full text link
    We report our rederivation of the equations of motion for relativistic compact binaries through the third-and-a-half post-Newtonian (3.5 PN) order approximation to general relativity using the strong field point particle limit to describe self-gravitating stars instead of the Dirac delta functional. The computation is done in harmonic coordinates. Our equations of motion describe the orbital motion of the binary consisting of spherically symmetric non-rotating stars. The resulting equations of motion fully agree with the 3.5 PN equations of motion derived in the previous works. We also show that the locally defined energy of the star has a simple relation with its mass up to the 3.5 PN order.Comment: 38 pages, no figures. Accepted for publication in Phys. Rev.
    corecore