35 research outputs found

    Gravitational Wave Chirp Search: Economization of PN Matched Filter Bank via Cardinal Interpolation

    Full text link
    The final inspiral phase in the evolution of a compact binary consisting of black holes and/or neutron stars is among the most probable events that a network of ground-based interferometric gravitational wave detectors is likely to observe. Gravitational radiation emitted during this phase will have to be dug out of noise by matched-filtering (correlating) the detector output with a bank of several 10510^5 templates, making the computational resources required quite demanding, though not formidable. We propose an interpolation method for evaluating the correlation between template waveforms and the detector output and show that the method is effective in substantially reducing the number of templates required. Indeed, the number of templates needed could be a factor ∌4\sim 4 smaller than required by the usual approach, when the minimal overlap between the template bank and an arbitrary signal (the so-called {\it minimal match}) is 0.97. The method is amenable to easy implementation, and the various detector projects might benefit by adopting it to reduce the computational costs of inspiraling neutron star and black hole binary search.Comment: scheduled for publicatin on Phys. Rev. D 6

    Time transfer and frequency shift to the order 1/c^4 in the field of an axisymmetric rotating body

    Get PDF
    Within the weak-field, post-Newtonian approximation of the metric theories of gravity, we determine the one-way time transfer up to the order 1/c^4, the unperturbed term being of order 1/c, and the frequency shift up to the order 1/c^4. We adapt the method of the world-function developed by Synge to the Nordtvedt-Will PPN formalism. We get an integral expression for the world-function up to the order 1/c^3 and we apply this result to the field of an isolated, axisymmetric rotating body. We give a new procedure enabling to calculate the influence of the mass and spin multipole moments of the body on the time transfer and the frequency shift up to the order 1/c^4. We obtain explicit formulas for the contributions of the mass, of the quadrupole moment and of the intrinsic angular momentum. In the case where the only PPN parameters different from zero are beta and gamma, we deduce from these results the complete expression of the frequency shift up to the order 1/c^4. We briefly discuss the influence of the quadrupole moment and of the rotation of the Earth on the frequency shifts in the ACES mission.Comment: 17 pages, no figure. Version 2. Abstract and Section II revised. To appear in Physical Review

    Relativistic Celestial Mechanics with PPN Parameters

    Get PDF
    Starting from the global parametrized post-Newtonian (PPN) reference system with two PPN parameters Îł\gamma and ÎČ\beta we consider a space-bounded subsystem of matter and construct a local reference system for that subsystem in which the influence of external masses reduces to tidal effects. Both the metric tensor of the local PPN reference system in the first post-Newtonian approximation as well as the coordinate transformations between the global PPN reference system and the local one are constructed in explicit form. The terms proportional to η=4ÎČ−γ−3\eta=4\beta-\gamma-3 reflecting a violation of the equivalence principle are discussed in detail. We suggest an empirical definition of multipole moments which are intended to play the same role in PPN celestial mechanics as the Blanchet-Damour moments in General Relativity. Starting with the metric tensor in the local PPN reference system we derive translational equations of motion of a test particle in that system. The translational and rotational equations of motion for center of mass and spin of each of NN extended massive bodies possessing arbitrary multipole structure are derived. As an application of the general equations of motion a monopole-spin dipole model is considered and the known PPN equations of motion of mass monopoles with spins are rederived.Comment: 71 page

    Optimum Placement of Post-1PN GW Chirp Templates Made Simple at any Match Level via Tanaka-Tagoshi Coordinates

    Full text link
    A simple recipe is given for constructing a maximally sparse regular lattice of spin-free post-1PN gravitational wave chirp templates subject to a given minimal match constraint, using Tanaka-Tagoshi coordinates.Comment: submitted to Phys. Rev.

    Curvature-corrected dilatonic black holes and black hole -- string transition

    Full text link
    We investigate extremal charged black hole solutions in the four-dimensional string frame Gauss-Bonnet gravity with the Maxwell field and the dilaton. Without curvature corrections, the extremal electrically charged dilatonic black holes have singular horizon and zero Bekenstein entropy. When the Gauss-Bonnet term is switched on, the horizon radius expands to a finite value provided curvature corrections are strong enough. Below a certain threshold value of the Gauss-Bonnet coupling the extremal black hole solutions cease to exist. Since decreasing Gauss-Bonnet coupling corresponds to decreasing string coupling gsg_s, the situation can tentatively be interpreted as classical indication on the black hole -- string transition. Previously the extremal dilaton black holes were studied in the Einstein-frame version of the Gauss-Bonnet gravity. Here we work in the string frame version of this theory with the S-duality symmetric dilaton function as required by the heterotic string theory.Comment: 14 pages, 2 figure

    Vacuum Polarization in the Spacetime of a Scalar-Tensor Cosmic String

    Get PDF
    We study the vacuum polarization effect in the spacetime generated by a magnetic flux cosmic string in the framework of a scalar-tensor gravity. The vacuum expectation values of the energy-momentum tensor of a conformally coupled scalar field are calculated. The dilaton's contribution to the vacuum polarization effect is shown explicitly.Comment: 11 pages, LATEX file, 2 eps figure

    Chiral spinors and gauge fields in noncommutative curved space-time

    Get PDF
    The fundamental concepts of Riemannian geometry, such as differential forms, vielbein, metric, connection, torsion and curvature, are generalized in the context of non-commutative geometry. This allows us to construct the Einstein-Hilbert-Cartan terms, in addition to the bosonic and fermionic ones in the Lagrangian of an action functional on non-commutative spaces. As an example, and also as a prelude to the Standard Model that includes gravitational interactions, we present a model of chiral spinor fields on a curved two-sheeted space-time with two distinct abelian gauge fields. In this model, the full spectrum of the generalized metric consists of pairs of tensor, vector and scalar fields. They are coupled to the chiral fermions and the gauge fields leading to possible parity violation effects triggered by gravity.Comment: 50 pages LaTeX, minor corrections and references adde

    Background independent action for double field theory

    Get PDF
    Double field theory describes a massless subsector of closed string theory with both momentum and winding excitations. The gauge algebra is governed by the Courant bracket in certain subsectors of this double field theory. We construct the associated nonlinear background-independent action that is T-duality invariant and realizes the Courant gauge algebra. The action is the sum of a standard action for gravity, antisymmetric tensor, and dilaton fields written with ordinary derivatives, a similar action for dual fields with dual derivatives, and a mixed term that is needed for gauge invariance.Comment: 45 pages, v2: minor corrections, refs. added, to appear in JHE

    Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock

    Get PDF
    Over a two-year duration, we have compared the frequency of the 199Hg+ 5d106s 2S 1/2 (F=0) 5d9 6s2 2D 5/2 (F=2) electric-quadrupole transition at 282 nm with the frequency of the ground-state hyperfine splitting in neutral 133Cs. These measurements show that any fractional time variation of the ratio nu(Cs)/nu(Hg) between the two frequencies is smaller than +/- 7 10^-15 / yr (1 sigma uncertainty). According to recent atomic structure calculations, this sets an upper limit to a possible fractional time variation of g(Cs) m_e / m_p alpha^6.0 at the same level.Comment: 4 pages with 3 figures. RevTeX 4, Submitted to Phys. Rev. Let

    Cosmic optical activity in the spacetime of a scalar-tensor screwed cosmic string

    Full text link
    Measurements of radio emission from distant galaxies and quasars verify that the polarization vectors of these radiations are not randomly oriented as naturally expected. This peculiar phenomenon suggests that the spacetime intervening between the source and observer may be exhibiting some sort of optical activity, the origin of which is not known. In the present paper we provide a plausible explanation to this phenomenon by investigating the r\^ole played by a Chern-Simons-like term in the background of an ordinary or superconducting screwed cosmic string in a scalar-tensor gravity. We discuss the possibility that the excess in polarization of the light from radio-galaxies and quasars can be understood as if the electromagnetic waves emitted by these cosmic objects interact with a scalar-tensor screwed cosmic string through a Chern-Simons coupling. We use current astronomical data to constrain possible values for the coupling constant of this theory, and show that it turns out to be: λ∌10−26\lambda \sim 10^{-26} eV, which is two orders of magnitude larger than in string-inspired theories.Comment: Revised version, to appear in Phys. Rev.
    corecore