Starting from the global parametrized post-Newtonian (PPN) reference system
with two PPN parameters γ and β we consider a space-bounded
subsystem of matter and construct a local reference system for that subsystem
in which the influence of external masses reduces to tidal effects. Both the
metric tensor of the local PPN reference system in the first post-Newtonian
approximation as well as the coordinate transformations between the global PPN
reference system and the local one are constructed in explicit form. The terms
proportional to η=4β−γ−3 reflecting a violation of the
equivalence principle are discussed in detail. We suggest an empirical
definition of multipole moments which are intended to play the same role in PPN
celestial mechanics as the Blanchet-Damour moments in General Relativity.
Starting with the metric tensor in the local PPN reference system we derive
translational equations of motion of a test particle in that system. The
translational and rotational equations of motion for center of mass and spin of
each of N extended massive bodies possessing arbitrary multipole structure
are derived. As an application of the general equations of motion a
monopole-spin dipole model is considered and the known PPN equations of motion
of mass monopoles with spins are rederived.Comment: 71 page