812 research outputs found

    A new test of conservation laws and Lorentz invariance in relativistic gravity

    Full text link
    General relativity predicts that energy and momentum conservation laws hold and that preferred frames do not exist. The parametrised post-Newtonian formalism (PPN) phenomenologically quantifies possible deviations from general relativity. The PPN parameter alpha_3 (which identically vanishes in general relativity) plays a dual role in that it is associated both with a violation of the momentum conservation law, and with the existence of a preferred frame. By considering the effects of alpha_3 neq 0 in certain binary pulsar systems, it is shown that alpha_3 < 2.2 x 10^-20 (90% CL). This limit improves on previous results by several orders of magnitude, and shows that pulsar tests of alpha_3 rank (together with Hughes-Drever-type tests of local Lorentz invariance) among the most precise null experiments of physics.Comment: Submitted to Classical Quantum Gravity, LaTeX, requires ioplppt.sty, no figure

    A Tighter Test of Local Lorentz Invariance using PSR J2317+1439

    Full text link
    Gravity being a long-range force, one might {\it a priori} expect the Universe's global matter distribution to select a preferred rest frame for local gravitational physics. The phenomenology of preferred-frame effects, in the strong-gravitational field context of binary pulsars, is described by two parameters α^1\hat{\alpha}_1 and α^2\hat{\alpha}_2. These parameters vanish identically in general relativity, and reduce, in the weak-field limit, to the two parametrized post-Newtonian (PPN) parameters α1{\alpha}_1 and α2{\alpha}_2. We derive a limit of ∣α^1∣<1.7×10−4|\hat{\alpha}_1| < 1.7\times 10^{-4} (90\%~C.L.) using the very low eccentricity binary pulsar PSR J2317+1439, improving by a factor of 3 on previous limits.Comment: 4 pages, LaTeX, requires aaspp4.sty and flushrt.sty, submitted to Ap

    Phenomenology of the Equivalence Principle with Light Scalars

    Get PDF
    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the "dilaton charge" of atomic systems for each of these. Two combinations are particularly important. One is due to the variations in the nuclear binding energy, with a sensitivity scaling with the atomic number as A−1/3A^{-1/3}. The other is due to electromagnetism. We compare limits on the dilaton parameters from existing experiments.Comment: 5 page

    Theoretical Aspects of the Equivalence Principle

    Full text link
    We review several theoretical aspects of the Equivalence Principle (EP). We emphasize the unsatisfactory fact that the EP maintains the absolute character of the coupling constants of physics while General Relativity, and its generalizations (Kaluza-Klein,..., String Theory), suggest that all absolute structures should be replaced by dynamical entities. We discuss the EP-violation phenomenology of dilaton-like models, which is likely to be dominated by the linear superposition of two effects: a signal proportional to the nuclear Coulomb energy, related to the variation of the fine-structure constant, and a signal proportional to the surface nuclear binding energy, related to the variation of the light quark masses. We recall the various theoretical arguments (including a recently proposed anthropic argument) suggesting that the EP be violated at a small, but not unmeasurably small level. This motivates the need for improved tests of the EP. These tests are probing new territories in physics that are related to deep, and mysterious, issues in fundamental physics.Comment: 21 pages, no figures; submitted to a "focus issue" of Classical and Quantum Gravity on Tests of the Weak Equivalence Principle, organized by Clive Speake and Clifford Wil

    Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction

    Full text link
    We derive Keplerian-type parametrization for the solution of post-Newtonian (PN) accurate conservative dynamics of spinning compact binaries moving in eccentric orbits. The PN accurate dynamics that we consider consists of the third post-Newtonian accurate conservative orbital dynamics influenced by the leading order spin effects, namely the leading order spin-orbit interactions. The orbital elements of the representation are explicitly given in terms of the conserved orbital energy, angular momentum and a quantity that characterizes the leading order spin-orbit interactions in Arnowitt, Deser, and Misner-type coordinates. Our parametric solution is applicable in the following two distinct cases: (i) the binary consists of equal mass compact objects, having two arbitrary spins, and (ii) the binary consists of compact objects of arbitrary mass, where only one of them is spinning with an arbitrary spin. As an application of our parametrization, we present gravitational wave polarizations, whose amplitudes are restricted to the leading quadrupolar order, suitable to describe gravitational radiation from spinning compact binaries moving in eccentric orbits. The present parametrization will be required to construct `ready to use' reference templates for gravitational waves from spinning compact binaries in inspiralling eccentric orbits. Our parametric solution for the post-Newtonian accurate conservative dynamics of spinning compact binaries clearly indicates, for the cases considered, the absence of chaos in these systems. Finally, we note that our parametrization provides the first step in deriving a fully second post-Newtonian accurate `timing formula', that may be useful for the radio observations of relativistic binary pulsars like J0737-3039.Comment: 18 pages, accepted by Phys. Rev.

    Third post-Newtonian accurate generalized quasi-Keplerian parametrization for compact binaries in eccentric orbits

    Full text link
    We present Keplerian-type parametrization for the solution of third post-Newtonian (3PN) accurate equations of motion for two non-spinning compact objects moving in an eccentric orbit. The orbital elements of the parametrization are explicitly given in terms of the 3PN accurate conserved orbital energy and angular momentum in both Arnowitt, Deser, and Misner-type and harmonic coordinates. Our representation will be required to construct post-Newtonian accurate `ready to use' search templates for the detection of gravitational waves from compact binaries in inspiralling eccentric orbits. Due to the presence of certain 3PN accurate gauge invariant orbital elements, the parametrization should be useful to analyze the compatibility of general relativistic numerical simulations involving compact binaries with the corresponding post-Newtonian descriptions. If required, the present parametrization will also be needed to compute post-Newtonian corrections to the currently employed `timing formula' for the radio observations of relativistic binary pulsars.Comment: 33 pages, 1 figur

    Introductory lectures on the Effective One Body formalism

    Full text link
    The Effective One Body (EOB) formalism is an analytical approach which aims at providing an accurate description of the motion and radiation of coalescing binary black holes. We present a brief review of the basic elements of this approach.Comment: 22 pages, 3 figures, lectures given at the Second ICRANet Stueckelberg Workshop on Relativistic Field Theories (Pescara, Italy, September 3-8, 2007); to be published in the International Journal of Modern Physics

    Testing general relativity by micro-arcsecond global astrometry

    Full text link
    The global astrometric observations of a GAIA-like satellite were modeled within the PPN formulation of Post-Newtonian gravitation. An extensive experimental campaign based on realistic end-to-end simulations was conducted to establish the sensitivity of global astrometry to the PPN parameter \gamma, which measures the amount of space curvature produced by unit rest mass. The results show that, with just a few thousands of relatively bright, photometrically stable, and astrometrically well behaved single stars, among the ~10^9 objects that will be observed by GAIA, \gamma can be estimated after 1 year of continuous observations with an accuracy of ~10^{-5} at the 3\sigma level. Extrapolation to the full 5-year mission of these results based on the scaling properties of the adjustment procedure utilized suggests that the accuracy of \simeq 2x10^{-7}, at the same 3\sigma level, can be reached with \~10^6 single stars, again chosen as the most astrometrically stable among the millions available in the magnitude range V=12-13. These accuracies compare quite favorably with recent findings of scalar-tensor cosmological models, which predict for \gamma a present-time deviation, |1-\gamma|, from the General Relativity value between 10^{-5} and 10^{-7}.Comment: 7 pages, 2 figures, to be published in A&

    Proposed New Test of Spin Effects in General Relativity

    Get PDF
    The recent discovery of a double-pulsar PSR J0737-3039A/B provides an opportunity of unequivocally observing, for the first time, spin effects in general relativity. Existing efforts involve detection of the precession of the spinning body itself. However, for a close binary system, spin effects on the orbit may also be discernable. Not only do they add to the advance of the periastron (by an amount which is small compared to the conventional contribution) but they also give rise to a precession of the orbit about the spin direction. The measurement of such an effect would also give information on the moment of inertia of pulsars
    • …
    corecore