3 research outputs found

    High Levels of Complement Activating Enzyme MASP-2 Are Associated With the Risk of Future Incident Venous Thromboembolism

    Get PDF
    Background: Experimental studies have shown that the complement activating enzyme MASP-2 (mannose-binding lectin associated serine protease 2) exhibits a thrombin-like activity and that inhibition of MASP-2 protects against thrombosis. In this study, we investigated whether plasma MASP-2 levels were associated with risk of future venous thromboembolism (VTE) and whether genetic variants linked to MASP-2 levels were associated with VTE risk. Methods: We conducted a population-based nested case-control study involving 410 VTE patients and 842 age- and sex-matched controls derived from the Norwegian Tromsø Study. Logistic regression was used to estimate odds ratios (ORs) of VTE across MASP-2 quartiles. Whole-exome sequencing and protein quantitative trait loci analyses were performed to assess genetic variants associated with MASP-2 levels. A 2-sample Mendelian randomization study, also including data from the INVENT consortium (International Network of Venous Thrombosis), was performed to assess causality. Results: Subjects with plasma MASP-2 in the highest quartile had a 48% higher OR of VTE (OR, 1.48 [95% CI, 1.06–2.06]) and 83% higher OR of deep vein thrombosis (OR, 1.83 [95% CI, 1.23–2.73]) compared with those with MASP-2 levels in the lowest quartile. The protein quantitative trait loci analysis revealed that 3 previously described gene variants, rs12711521 (minor allele frequency, 0.153), rs72550870 (minor allele frequency, 0.045; missense variants in the MASP2 gene), and rs2275527 (minor allele frequency, 0.220; exon variant in the adjacent MTOR gene) explained 39% of the variation of MASP-2 plasma concentration. The OR of VTE per 1 SD increase in genetically predicted MASP-2 was 1.03 ([95% CI, 1.01–1.05] P=0.0011). Conclusions: Our findings suggest that high plasma MASP-2 levels are causally associated with risk of future VTE

    Utilizing Sphingomyelinase Sensitizing Liposomes in Imaging Intestinal Inflammation in Dextran Sulfate Sodium-Induced Murine Colitis

    No full text
    Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, resulting in severe symptoms. At the moment, the goal of medical treatments is to reduce inflammation. IBD is treated with systemic anti-inflammatory compounds, but they have serious side effects. The treatment that is most efficient and causes the fewest side effects would be the delivery of the drugs on the disease site. This study aimed to investigate the suitability of sphingomyelin (SM) containing liposomes to specifically target areas of inflammation in dextran sulfate sodium-induced murine colitis. Sphingomyelin is a substrate to the sphingomyelinase enzyme, which is only present outside cells in cell stress, like inflammation. When sphingomyelin consisting of liposomes is predisposed to the enzyme, it causes the weakening of the membrane structure. We demonstrated that SM-liposomes are efficiently taken up in intestinal macrophages, indicating their delivery potential. Furthermore, our studies showed that sphingomyelinase activity and release are increased in a dextran sulfate sodium-induced IBD mouse model. The enzyme appearance in IBD disease was also traced in intestine samples of the dextran sulfate sodium-treated mice and human tissue samples. The results from the IBD diseased animals, treated with fluorescently labeled SM-liposomes, demonstrated that the liposomes were taken up preferentially in the inflamed colon. This uptake efficiency correlated with sphingomyelinase activity
    corecore