696 research outputs found

    Persistent supersolid phase of hard-core bosons on the triangular lattice

    Full text link
    We study hard-core bosons with unfrustrated hopping (tt) and nearest neighbour repulsion (UU) on the triangular lattice. At half-filling, the system undergoes a zero temperature (TT) quantum phase transition from a superfluid phase at small UU to a supersolid at Uc4.45U_c \approx 4.45 in units of 2t2t. This supersolid phase breaks the lattice translation symmetry in a characteristic 3×3\sqrt{3} \times \sqrt{3} pattern, and is remarkably stable--indeed, a smooth extrapolation of our results indicates that the supersolid phase persists for arbitrarily large U/tU/t.Comment: 4 pages, 5 figures, two column forma

    Long term Ultra-Violet Variability of Seyfert galaxies

    Get PDF
    Flux variability is one of the defining characteristics of Seyfert galaxies, a class of active galactic nuclei (AGN). Though these variations are observed over a wide range of wavelengths, results on their flux variability characteristics in the ultra-violet (UV) band are very limited. We present here the long term UV flux variability characteristics of a sample of fourteen Seyfert galaxies using data from the International Ultraviolet Explorer acquired between 1978 and 1995. We found that all the sources showed flux variations with no statistically significant difference in the amplitude of UV flux variation between shorter and longer wavelengths. Also, the flux variations between different near-UV (NUV, 1850 - 3300 A) and far-UV (FUV, 1150 - 2000 A) passbands in the rest frames of the objects are correlated with no time lag. The data show indications of (i) a mild negative correlation of UV variability with bolometric luminosity and (ii) weak positive correlation between UV variability and black hole mass. At FUV, about 50% of the sources show a strong correlation between spectral indices and flux variations with a hardening when brightening behaviour, while for the remaining sources the correlation is moderate. In NUV, the sources do show a harder when brighter trend, however, the correlation is either weak or moderate.Comment: Accepted by Journal of Astrophysics and Astronom

    Salinity tolerance and fishery of mud shrimp Solenocera crassicornis (H. Milne Edwards) in the coastal waters of Mumbai

    Get PDF
    Salinity tolerance of mud shrimp Solenocera crassicornis investigated at different salinities ranging from 15‰ to 55‰ showed that shrimps in the salinity range 30‰ - 42‰ survived but those in lower and higher salinities died soon after the transfer. Ionic concentration in the hemolymph and free amino acids in the body muscle in response to different salinity ranges showed hypo-regulation initially but later became hyposmotic to the medium and died eventually when the salinity decreased. The abundance of shrimp showed inverse relationship with rainfall and consequent lowering of salinity in the inshore waters. The study showed that S. crassicornis can regulate osmotic and ionic concentrations of body fluids efficiently in the salinity range of 30 - 42‰ but unlike euryhaline penaeid shrimps it is a poor regulator at lower salinities and therefore it migrates offshore during monsoon months

    Emergent Moments and Random Singlet Physics in a Majorana Spin Liquid

    Get PDF
    We exhibit an exactly solvable example of a SU(2) symmetric Majorana spin liquid phase, in which quenched disorder leads to random-singlet phenomenology of emergent magnetic moments. More precisely, we argue that a strong-disorder fixed point controls the low temperature susceptibility chi(T) of an exactly solvable S = 1/2 model on the decorated honeycomb lattice with vacancy and/or bond disorder, leading to chi(T) = C/T + DT alpha(T)-1, where alpha(T) -> 0 slowly as the temperature T -> 0. The first term is a Curie tail that represents the emergent response of vacancy-induced spin textures spread over many unit cells: it is an intrinsic feature of the site-diluted system, rather than an extraneous effect arising from isolated free spins. The second term, common to both vacancy and bond disorder [with different alpha(T) in the two cases] is the response of a random singlet phase, familiar from random antiferromagnetic spin chains and the analogous regime in phosphorus-doped silicon (Si:P)

    Emergent moments and random singlet physics in a Majorana spin liquid

    Get PDF
    We exhibit an exactly solvable example of a SU(2) symmetric Majorana spin liquid phase, in which quenched disorder leads to random-singlet phenomenology. More precisely, we argue that a strong-disorder fixed point controls the low temperature susceptibility χ(T)\chi(T) of an exactly solvable S=1/2S=1/2 model on the decorated honeycomb lattice with quenched bond disorder and/or vacancies, leading to χ(T)=C/T+DTα(T)1\chi(T) = {\mathcal C}/T+ {\mathcal D} T^{\alpha(T) - 1} where α(T)0\alpha(T) \rightarrow 0 as T0T \rightarrow 0. The first term is a Curie tail that represents the emergent response of vacancy-induced spin textures spread over many unit cells: it is an intrinsic feature of the site-diluted system, rather than an extraneous effect arising from isolated free spins. The second term, common to both vacancy and bond disorder (with different α(T)\alpha(T) in the two cases) is the response of a random singlet phase, familiar from random antiferromagnetic spin chains and the analogous regime in phosphorus-doped silicon (Si:P).Comment: two-column format; 4+pages; 3 figure

    Dulmage-Mendelsohn percolation: Geometry of maximally-packed dimer models and topologically-protected zero modes on diluted bipartite lattices

    Full text link
    The classic combinatorial construct of {\em maximum matchings} probes the random geometry of regions with local sublattice imbalance in a site-diluted bipartite lattice. We demonstrate that these regions, which host the monomers of any maximum matching of the lattice, control the localization properties of a zero-energy quantum particle hopping on this lattice. The structure theory of Dulmage and Mendelsohn provides us a way of identifying a complete and non-overlapping set of such regions. This motivates our large-scale computational study of the Dulmage-Mendelsohn decomposition of site-diluted bipartite lattices in two and three dimensions. Our computations uncover an interesting universality class of percolation associated with the end-to-end connectivity of such monomer-carrying regions with local sublattice imbalance, which we dub {\em Dulmage-Mendelsohn percolation}. Our results imply the existence of a monomer percolation transition in the classical statistical mechanics of the associated maximally-packed dimer model and the existence of a phase with area-law entanglement entropy of arbitrary many-body eigenstates of the corresponding quantum dimer model. They also have striking implications for the nature of collective zero-energy Majorana fermion excitations of bipartite networks of Majorana modes localized on sites of diluted lattices, for the character of topologically-protected zero-energy wavefunctions of the bipartite random hopping problem on such lattices, and thence for the corresponding quantum percolation problem, and for the nature of low-energy magnetic excitations in bipartite quantum antiferromagnets diluted by a small density of nonmagnetic impurities.Comment: minor typos and errors fixed; further clarifications added. no substantive changes in result

    Griffiths Effects in Random Heisenberg Antiferromagnetic S=1 Chains

    Full text link
    I consider the effects of enforced dimerization on random Heisenberg antiferromagnetic S=1 chains. I argue for the existence of novel Griffiths phases characterized by {\em two independent dynamical exponents} that vary continuously in these phases; one of the exponents controls the density of spin-1/2 degrees of freedom in the low-energy effective Hamiltonian, while the other controls the corresponding density of spin-1 degrees of freedom. Moreover, in one of these Griffiths phases, the system has very different low temperature behavior in two different parts of the phase which are separated from each other by a sharply defined crossover line; on one side of this crossover line, the system `looks' like a S=1 chain at low energies, while on the other side, it is best thought of as a S=1/2S=1/2 chain. A strong-disorder RG analysis makes it possible to analytically obtain detailed information about the low temperature behavior of physical observables such as the susceptibility and the specific heat, as well as identify an experimentally accessible signature of this novel crossover.Comment: 16 pages, two-column PRB format; 5 figure

    Non-equilibrium Gross-Pitaevskii dynamics of boson lattice models

    Full text link
    Motivated by recent experiments on trapped ultra-cold bosonic atoms in an optical lattice potential, we consider the non-equilibrium dynamic properties of such bosonic systems for a number of experimentally relevant situations. When the number of bosons per lattice site is large, there is a wide parameter regime where the effective boson interactions are strong, but the ground state remains a superfluid (and not a Mott insulator): we describe the conditions under which the dynamics in this regime can be described by a discrete Gross-Pitaevskii equation. We describe the evolution of the phase coherence after the system is initially prepared in a Mott insulating state, and then allowed to evolve after a sudden change in parameters places it in a regime with a superfluid ground state. We also consider initial conditions with a "pi phase" imprint on a superfluid ground state (i.e. the initial phases of neighboring wells differ by pi), and discuss the subsequent appearance of density wave order and "Schrodinger cat" states.Comment: 16 pages, 11 figures; (v2) added reference

    Crystallization of SrCO<SUB>3</SUB> within thermally evaporated fatty acid films: unusual morphology of crystal aggregates

    Get PDF
    Reaction of CO2 with electrostatically entrapped Sr2+ ions within thermally evaporated stearic acid films leads to the in-situ growth of SrCO3 crystals in highly organized assemblies, the organization possibly occurring due to hydrophobic association of the crystallites covered by a monolayer of stearic acid
    corecore