4,147 research outputs found

    Kinematic Analysis and Trajectory Planning of the Orthoglide 5-axis

    Get PDF
    The subject of this paper is about the kinematic analysis and the trajectory planning of the Orthoglide 5-axis. The Orthoglide 5-axis a five degrees of freedom parallel kinematic machine developed at IRCCyN and is made up of a hybrid architecture, namely, a three degrees of freedom translational parallel manip-ulator mounted in series with a two degrees of freedom parallel spherical wrist. The simpler the kinematic modeling of the Or-thoglide 5-axis, the higher the maximum frequency of its control loop. Indeed, the control loop of a parallel kinematic machine should be computed with a high frequency, i.e., higher than 1.5 MHz, in order the manipulator to be able to reach high speed motions with a good accuracy. Accordingly, the direct and inverse kinematic models of the Orthoglide 5-axis, its inverse kine-matic Jacobian matrix and the first derivative of the latter with respect to time are expressed in this paper. It appears that the kinematic model of the manipulator under study can be written in a quadratic form due to the hybrid architecture of the Orthoglide 5-axis. As illustrative examples, the profiles of the actuated joint angles (lengths), velocities and accelerations that are used in the control loop of the robot are traced for two test trajectories.Comment: Appears in International Design Engineering Technical Conferences \& Computers and Information in Engineering Conference, Aug 2015, Boston, United States. 201

    Kink modes and effective four dimensional fermion and Higgs brane models

    Get PDF
    In the construction of a classical smoothed out brane world model in five dimensions, one uses a dynamically generated domain wall (a kink) to localise an effective four dimensional theory. At the level of the Euler-Lagrange equations the kink sets up a potential well, a mechanism which has been employed extensively to obtain localised, four dimensional, massless chiral fermions. We present the generalisation of this kink trapping mechanism for both scalar and fermionic fields, and retain all degrees of freedom that were present in the higher dimensional theory. We show that a kink background induces a symmetric modified Poschl-Teller potential well, and give explicit analytic forms for all the bound modes and a restricted set of the continuum modes. We demonstrate that it is possible to confine an effective four dimensional scalar field with a quartic potential of arbitrary shape. This can be used to place the standard model electroweak Higgs field on the brane, and also generate nested kink solutions. We also consider the limits of the parameters in the theory which give thin kinks and localised and de-localised scalar and fermionic fields.Comment: 25 pages, REVTeX4 preprint; v2: added appendix B and made minor other changes to thoroughly explain the kink zero mode dynamic

    Quantum corrections in Higgs inflation: the real scalar case

    Get PDF
    We present a critical discussion of quantum corrections, renormalisation, and the computation of the beta functions and the effective potential in Higgs inflation. In contrast with claims in the literature, we find no evidence for a disagreement between the Jordan and Einstein frames, even at the quantum level. For clarity of discussion we concentrate on the case of a real scalar Higgs. We first review the classical calculation and then discuss the back reaction of gravity. We compute the beta functions for the Higgs quartic coupling and non-minimal coupling constant. Here, the mid-field regime is non-renormalisable, but we are able to give an upper bound on the 1-loop corrections to the effective potential. We show that, in computing the effective potential, the Jordan and Einstein frames are compatible if all mass scales are transformed between the two frames. As such, it is consistent to take a constant cutoff in either the Jordan or Einstein frame, and both prescriptions yield the same result for the effective potential. Our results are extended to the case of a complex scalar Higgs.Comment: 28 pages, 1 figure. v2: minor changes, updated references, published versio

    Stability of domain walls coupled to Abelian gauge fields

    Full text link
    Rozowsky, Volkas and Wali recently found interesting numerical solutions to the field equations for a gauged U1xU1 scalar field model. Their solutions describe a reflection-symmetric domain wall with scalar fields and coupled gauge configurations that interpolate between constant magnetic fields on one side of the wall and exponentially decaying ones on the other side. This corresponds physically to an infinite sheet of supercurrent confined to the domain wall with a linearly rising gauge potential on one side and Meissner suppression on the other. While it was shown that these static solutions satisfied the field equations, their stability was left unresolved. In this paper, we analyse the normal modes of perturbations of the static solutions to demonstrate their perturbative stability.Comment: 9 pages, 9 figure

    Synchronization of Coupled Boolean Phase Oscillators

    Full text link
    We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni- and bi-directional coupling of oscillators in both experiment and numerical simulation with a piecewise switching model. In the unidirectional coupling scheme, we unveil asymmetric triangular-shaped locking regions (Arnold tongues) that appear at multiples of the natural frequency of the oscillators. This extends observations of a single locking region reported in previous studies. In the bidirectional coupling scheme, we map out a symmetric locking region in the parameter space of frequency detuning and coupling strength. Because of large scalability of our setup, our observations constitute a first step towards realizing large-scale networks of coupled oscillators to address fundamental questions on the dynamical properties of networks in a new experimental setting.Comment: 8 pages, 8 figure

    Investigating Multiple Solutions in the Constrained Minimal Supersymmetric Standard Model

    Full text link
    Recent work has shown that the Constrained Minimal Supersymmetric Standard Model (CMSSM) can possess several distinct solutions for certain values of its parameters. The extra solutions were not previously found by public supersymmetric spectrum generators because fixed point iteration (the algorithm used by the generators) is unstable in the neighbourhood of these solutions. The existence of the additional solutions calls into question the robustness of exclusion limits derived from collider experiments and cosmological observations upon the CMSSM, because limits were only placed on one of the solutions. Here, we map the CMSSM by exploring its multi-dimensional parameter space using the shooting method, which is not subject to the stability issues which can plague fixed point iteration. We are able to find multiple solutions where in all previous literature only one was found. The multiple solutions are of two distinct classes. One class, close to the border of bad electroweak symmetry breaking, is disfavoured by LEP2 searches for neutralinos and charginos. The other class has sparticles that are heavy enough to evade the LEP2 bounds. Chargino masses may differ by up to around 10% between the different solutions, whereas other sparticle masses differ at the sub-percent level. The prediction for the dark matter relic density can vary by a hundred percent or more between the different solutions, so analyses employing the dark matter constraint are incomplete without their inclusion.Comment: 30 pages, 12 figures, 2 tables; v2: added discussion on speed of shooting method, fixed typos, matches published versio
    • …
    corecore