3 research outputs found

    Spatial synchrony in Drosophila suzukii population dynamics along elevational gradients

    No full text
    1. Spotted wing drosophila (SWD; Drosophila suzukii Matsumura, 1931) is a polyphagous invasive crop pest native of Southeast Asia able to attack a wide array of host plant species in both cultivated and natural habitats. SWD is now widespread in several mountain regions, but it is still unclear how the species moves to different elevations across the seasons, and how this depends on environmental conditions and food resources. 2. The temporal dynamics of several SWD populations were studied along elevational gradients in the Alps using a synchrony analysis. Twelve transects were selected, covering an overall elevational gradient of 2100 m. SWD abundance was monitored every 2 weeks during the growing season (from June to November 2015) when cultivated and wild hosts are potentially susceptible (i.e. fruits are ripe). 3. Spotted wing drosophila were widely distributed along all the tested elevations, revealing synchrony in population dynamics across ranges in elevation and geographic distance. Synchronised populations were observed at distances of up to 100 km at sites with similar temperatures. The high dispersal potential of the pest together with the seasonal variation in temperature are likely to be the dominant mechanisms causing the observed spatial synchrony. A factor that seemed to reduce synchrony is the large concentration of host plants (i.e. crop) in lowland agricultural landscapes. 4. The spatial synchrony in pest abundance at large spatial scale indicates that the risk of SWD outbreaks is highly dependent on drivers beyond the control of traditional field-scale management. These findings could help in developing monitoring and predictive models of SWD population dynamics

    Three-Month Safety and Efficacy Outcomes for the Smaller-Incision New-Generation Implantable Miniature Telescope (SING IMT™)

    No full text
    The smaller-incision new-generation implantable miniature telescope (SING IMT™) is the second generation of the IMT™, a telescope prosthesis that is indicated for monocular implantation in patients with stable vision impairment caused by bilateral central scotomas associated with end-stage Age-related macular degeneration (AMD). This non-comparative retrospective study is the first and largest single-surgeon case series to evaluate the short-term (3 months) safety and efficacy of the device in patients with disciform scars or geographic atrophy at baseline. The main outcome measures included best-corrected distance and near visual acuity (CDVA and CDNVA, respectively), endothelial cell density (ECD) loss, and the incidence of complications. At postoperative month 3 in the study eyes, mean CDVA and CDNVA improved by +14.9 ± 7.1 letters and +7.7 ± 3.2 Jaeger levels, respectively. Importantly, 70.83% of patients gained ≥ 2 lines, 58.33% ≥ 3 lines, and 25.00% ≥ 4 lines of CDVA. From baseline, ECD loss in the study eyes was 10.4 ± 13.3% at 3 months, however, ECD was comparable between the study and fellow eyes at all time points. The most common complication was corneal edema. In all, these short-term outcomes suggest that the SING IMT™ delivers lower ECD loss than the first-generation IMT ™, but similar visual outcomes and safety

    Common cardiovascular risk factors and in-hospital mortality in 3,894 patients with COVID-19: survival analysis and machine learning-based findings from the multicentre Italian CORIST Study

    No full text
    There is poor knowledge on characteristics, comorbidities and laboratory measures associated with risk for adverse outcomes and in-hospital mortality in European Countries. We aimed at identifying baseline characteristics predisposing COVID-19 patients to in-hospital death
    corecore