46 research outputs found

    Invasive Cx43^{high} sub-line of human prostate DU145 cells displays increased nanomechanical deformability

    Get PDF
    Connexin(Cx)43high cells are preferentially recruited to the invasive front of prostate cancer in vitro and in vivo. To address the involvement of Cx43 in the regulation of human prostate cancer DU145 cell invasiveness, we have analysed the nanoelasticity of invasive Cx43high sub-sets of DU145 cells by atomic force microscopy (AFM). The Cx43high DU145 cells displayed considerably higher susceptibility to mechanical distortions than the wild type DU145 cells. Transient Cx43 silencing had no effect on their elastic properties. Our data confirm the relationship between the invasive potential, Cx43 expression and nanoelasticity of the DU145 cells. However, they also show that Cx43 is not directly involved in the maintenance of DU145 invasive phenotype

    Epidermal growth factor (EGF) augments the invasive potential of human glioblastoma multiforme cells via the activation of collaborative EGFR/ROS-dependent signaling

    Get PDF
    Abnormal secretion of epidermal growth factor (EGF) by non-neuronal cells (e.g., gliomaassociated microglia) establishes a feedback loop between glioblastoma multiforme (GBM) invasion and a functional disruption of brain tissue. Considering the postulated significance of this vicious circle for GBM progression, we scrutinized mechanisms of EGF-dependent pro-invasive signaling in terms of its interrelations with energy metabolism and reactive oxygen species (ROS) production. The effects of EGF on the invasiveness of human glioblastoma T98G cells were estimated using time-lapse video microscopy, immunocytochemistry, cell cycle assay, immunoblot analyses, and Transwell庐 assay. These techniques were followed by quantification of the effect of EGFR (Epidermal Growth Factor Receptor) and ROS inhibitors on the EGF-induced T98G invasiveness and intracellular ROS, ATP, and lactate levels and mitochondrial metabolism. The EGF remarkably augmented the proliferation and motility of the T98G cells. Responses of these cells were accompanied by cellular rear鈥揻ront polarization, translocation of vinculin to the leading lamellae, and increased promptness of penetration of micropore barriers. Erlotinib (the EGFR inhibitor) significantly attenuated the EGF-induced T98G invasiveness and metabolic reprogramming of the T98G cells, otherwise illustrated by the increased mitochondrial activity, glycolysis, and ROS production in the EGF-treated cells. In turn, ROS inhibition by N-acetyl-L-cysteine (NAC) had no effect on T98G morphology, but considerably attenuated EGF-induced cell motility. Our data confirmed the EGFR/ROS-dependent pro-neoplastic and pro-invasive activity of EGF in human GBM. These EGF effects may depend on metabolic reprogramming of GBM cells and are executed by alternative ROS-dependent/-independent pathways. The EGF may thus preserve bioenergetic homeostasis of GBM cells in hypoxic regions of brain tissue

    Deciphering the functional role of RIPK4 in melanoma

    Get PDF
    The receptor-interacting protein kinase 4 (RIPK4) plays an important role in the development and maintenance of various tissues including skin, but its role in melanoma has not been reported. Using patient-derived cell lines and clinical samples, we show that RIPK4 is expressed in melanomas at different levels. This heterogenous expression, together with very low level of RIPK4 in melanocytes, indicates that the role of this kinase in melanoma is context-dependent. While the analysis of microarray data has revealed no straightforward correlation between the stage of melanoma progression and RIPK4 expression in vivo, relatively high levels of RIPK4 are in metastatic melanoma cell lines. RIPK4 down-regulation by siRNA resulted in the attenuation of invasive potential as assessed by time-lapse video microscopy, wound-healing and transmigration assays. These effects were accompanied by reduced level of pro-invasive proteins such as MMP9, MMP2, and N-cadherin. Incubation of melanoma cells with phorbol ester (PMA) increased PKC-11\beta level and hyperphosphorylation of RIPK4 resulting in degradation of RIPK4. Interestingly, incubation of cells with PMA for short and long durations revealed that cell migration is controlled by the NF-\kappa signaling in a RIPK4-dependent (RIPK4highRIPK4^{high}) or independent (RIPK4lowRIPK4^{low}) manner depending on cell origin (distant or lymph node metastasis) or phenotype (mesenchymal or epithelial)

    Bioinspired bola-type peptide dendrimers inhibit proliferation and invasiveness of glioblastoma cells in a manner dependent on their structure and amphipathic properties

    Get PDF
    (1) Background: Natural peptides supporting the innate immune system studied at the functional and mechanistic level are a rich source of innovative compounds for application in human therapy. Increasing evidence indicates that apart from antimicrobial activity, some of them exhibit selective cytotoxicity towards tumor cells. Their cationic, amphipathic structure enables interactions with the negatively-charged membranes of microbial or malignant cells. It can be modeled in 3D by application of dendrimer chemistry. (2) Methods: Here we presented design principles, synthesis and bioactivity of branched peptides constructed from ornithine (Orn) assembled as proline (Pro)- or histidine (His)-rich dendrons and dendrimers of the bola structure. The impact of the structure and amphipathic properties of dendrons/dendrimers on two glioblastoma cell lines U87 and T98G was studied with the application of proliferation, apoptosis and cell migration assays. Cell morphology/cytoskeleton architecture was visualized by immunofluorescence microscopy. (3) Results: Dimerization of dendrons into bola dendrimers enhanced their bioactivity. Pro- and His-functionalized bola dendrimers displayed cytostatic activity, even though differences in the responsiveness of U87 and T98G cells to these compounds indicate that their bioactivity depends not only on multiple positive charge and amphipathic structure but also on cellular phenotype. (4) Conclusion: Ornithine dendrons/dendrimers represent a group of promising anti-tumor agents and the potential tools to study interrelations between drug bioactivity, its chemical properties and tumor cells’ phenotype

    Altered Elemental Distribution in Male Rat Brain Tissue as a Predictor of Glioblastoma Multiforme Growth : Studies Using SR-XRF Microscopy

    Get PDF
    Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal鈥檚 brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat鈥檚 brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression
    corecore